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Except for a few remarks, everything can be found in [Cal14]; [Cal15]; [Pan+13]. The fully extended version
seems to be still in the works [CHS].
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1 Recollections

1.1 Stacks
Throughout, stacks are derived ∞-stacks

dAffop = cdga≤0 → sSet

that preserve weak equivalences, land in weak Kan complexes (∼ weak ∞-groupoids), and satisfy étale
descent. We denote by dSt the (∞, 1)-category (Lurie’s ∞) of stacks.

Any derived 1-stack (with target Set, landing in groupoids) gives a stack after taking nerves.

Similar to sheafification, stackification associates a stack to a simplicial presheaf on affine derived schemes,
which amounts to taking fibrant replacements in a natural model structure on simplicial preasheaves (induced
by one on sSet where weak Kan complexes are fibrant).

Definition 1.1 (Betti stack). Let X be a topological space and let Sing•(X) denote its singular chains.
The stackification of

XB : A 7→ Sing•(X),

still denoted by XB , is called the Betti stack associated to X.
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Definition 1.2 (Mapping stack). Given stacks X, Y , we set

Map(X,Y )(A) = HomdSt(X ×A, Y ).

This defines a stack Map(X,Y ).

Where necessary, we implicitly treat affine derived schemes as stacks.

1.2 Symplectic structures
Let A ∈ cdga≤0 and let Ω1

A denote the A-module of its Kähler differentials (1-forms). Let

Ωp
A = Symp(Ω1

A[1])[−p].

Choose a fibrant replacement Ã → A (under the base field k) with respect to the projective model structure
on cdga≤0, and write

Ap(A) = Ωp

Ã
∈ Cpx,

considered as a k-complex. For any stack X, we may set Ap(X) = holimSpec(A)→XAp(A). Finally, write

Ap(X,n) = HomCpx(k,Ap(X)[n])

for the space of n-cocycles in Ap(X), called p-forms of degree n.

Definition 1.3.

• The de Rham algebra of A,
DR•(A) =

∏
n≥0

Ωn
A[−n]

has total differential dΩ + ddR, with dΩ the internal differential of each Ωn
A[−n], and ddR is the de

Rham differential extending A → Ω1
A[−1], where it is the usual de Rham differential with a shift.

• Let
Ap,cl(A) = HomCpx(k,DR≥p(Ã)[p][n])

denote the space of closed p-forms of degree n.

• Let the A-module
LA = A⊗Ã Ω1

Ã

denote the cotangent complex of A, which again extends to any stack.

As Ap,cl satisfies étale descent again, it is defined on any stack, just like Ap.

Definition 1.4. Let X be an Artin stack locally of finite presentation, whence

LX ∈ QCoh(X) = holimSpec(A)→X(A -mod)

is dualisable. The tangent complex of X is defined by

TX := L∨
X .

It is not enough for X to be Artin.1 One says X is locally of finite presentation if there exists an affine étale
cover2 of X with finitely presented affines. One says A ∈ cdga≤0 is finitely presented if Homcdga≤0

(A,−)
commutes with homotopy colimits, cf. [Stacks, Tag 00QO] for the non-derived case.

1Sometimes Artin already means locally of finite presentation as well, but here n-Artin means the quotient of a smooth
groupoid of (n − 1)-Artin stacks, starting with derived schemes in n = 0. Artin, a.k.a. geometric, means n-Artin for some n.
A smooth (Segal) groupoid in dSt [Toë14, §3.3] is a (Segal) groupoid object X• in dSt such that the face maps X1 → X0 are
smooth morphisms. Its quotient is its geometric realisation |X•|.

2Calaque requires the following only of a smooth cover. For the dualisability of LX this is fine.
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Definition 1.5. Let X be Artin and locally of finite presentation.

• Any 2-form ω ∈ A2(X,n) gives map
ω# : TX → LX [n].

It is called non-degenerate if ω# is a weak equivalence.

• A symplectic form of degree n on X is a point ω ∈ A2,cl(X,n) whose 2-form component is non-
degenerate.

Note that in the non-derived case, weak equivalence reduces to an isomorphism.

2 Unoriented TFTs
Definition 2.1. Let Bordn denote the category whose objects are closed (n − 1)-manifolds and whose
morphisms are n-dimensional bordisms modulo diffeomorphisms. Disjoint union ⊔ makes it symmetric
monoidal.

Definition 2.2. Let Corr denote the category with objects stacks and morphisms

HomCorr(X,Y ) := {V → X × Y }/w.e.,

correspondences modulo weak equivalence. Composition of V → X × Y (the constituting coordinate maps)
with W → Y × Z is given by

V ×R
Y W → X × Z,

defined up to weak equivalence. Product × of stacks makes Corr symmetric monoidal.

Proposition 2.3. Let X be a stack. The assignment

ZX := Map((−)B , X) : Bordn → Corr

is (or rather lifts to) an n-TFT, i.e. a symmetric monoidal functor.

Let M be an n-manifold, ∂M = N ⊔ N ′ with N1, N2 closed (n − 1)-manifolds. Then ZX must map M
to (the weak equivalence class of) a correspondence V → Map(NB , X) × Map(N ′

B , X). We may set
V = Map(MB , X) and use the pullback maps as the two component maps, coming from the Betti versions
of the inclusions N,N ′ ↪→ M . Luckily, Betti takes chains instead of cochains, so it is covariant.

Remark 2.4. We must declare ZX(∅) = ∗, with ∅ seen as a closed (n− 1)-manifold.

Remark 2.5. Note that this is not sensitive to orientation. One might object that Bordn is not even a
category, as M doesn’t have a direction, but only hom-sets are defined. Indeed, Corr has the same feature:
weak equivalence classes of correspondences are insensitive to the order of X and Y in the product. If you
feel disconcerted, you can artificially label morphisms in both Bordn and Corr with a direction (effectively
doubling them), like taking an oriented double cover.

The goal of the rest of this note is to build up to an oriented version, where the input X will be symplectic
and the target category will be Lagrangian correspondences.

3 Lagrangian correspondences
Let X and L be Artin and locally of finite presentation, and let ω be an n-shifted symplectic form on X.
Recall the following from earlier in the seminar:

Definition 3.1. A Lagrangian structure on a map f : L → X is a path h from 0 to f∗ω (an isotropic
structure), such that the induced map Tf → LL[n− 1] is a weak equivalence (non-degeneracy).
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Before promoting Corr to Lagrangian correspondences LagCorr, recall the following silly fact. If (M,ωM ) and
(N,ωN ) are symplectic manifolds, then M ×N is again symplectic with symplectic form π∗

MωM + π∗
NωN .

Let now f1 : L1 → X×Y , f2 : L2 → Y ×Z be Lagrangian maps, where (X,ωX) (Y, ωY ), (Z, ωZ) are n-shifted
symplectic, and Y = (Y,−ωY ) (same for Z). Again, X ×Y is n-shifted symplectic with form π∗

XωX +π∗
Y ωY

(same for X × Y , Y × Z).

Proposition 3.2. The composition L1 ×R
Y L2 → X × Z has a Lagrangian structure.

A homotopy a+ b ∼ 0 is a homotopy a ∼ −b. By assumption, therefore, we have homotopies

f∗
1π

∗
XωX ∼ f∗

1π
∗
Y ωY ,

f∗
2π

∗
Y ωY ∼ f∗

2π
∗
ZωZ ,

as well as (cf. the proof of the Lagrangian intersection theorem)

π∗
L1
f∗
1π

∗
Y ωY ∼ π∗

L2
f∗
2π

∗
Y ωY in A2,cl(L1 ×R

Y L2, n).

(This is the intermediate path in the zero loop that appears on page 10 of Nicola’s notes.) In toto, we have
a homotopy

π∗
L1
f∗
1π

∗
XωX ∼ π∗

L1
f∗
1π

∗
Y ωY ∼ π∗

L2
f∗
2π

∗
Y ωY ∼ π∗

L2
f∗
2π

∗
ZωZ .

This gives an isotropic structure on the composed correspondence (call it f), which is non-degenerate for silly
reasons. Just like in the Lagrangian intersection theorem, start the two defining exact sequences with Tf and
with LL1×R

Y L2
[n − 1], and give the induced maps between the sequences. Using the assumptions (and that

T : × 7→ ⊕), one sees that the vertical map Tf → LL1×R
Y L2

[n − 1] is sandwiched in a homotopy-commuting
diagram with rows exact and all other verticals weak equivalences.

Remark 3.3. In TFT terms, this reduces to an excision statement when X = Z = ∗ (with its zero n-
symplectic structure), saying L1 ×R

Y L2 is (n − 1) symplectic. So, partition functions will be symplectic
intersections, whereas time evolution will be given by Lagrangian graphs.

Definition 3.4. Let LagCorrn denote the category whose objects are n-shifted stacks and whose morphisms
are Lagrangian correspondences up to weak equivalence.

In order to promote ZX to an oriented TFT

Bordorn → LagCorr,

we must equip the mapping stacks Map(NB , X) with symplectic structures and the pullback graphs

Map(MB , X) → Map(NB , X)×Map(N ′
B , X)

with Lagrangian structures. Their composability will then follow from the Proposition above.

Indeed, Map(Y,X), for X n-symplectic, will be symplectic (with a different shift in general) if one can
integrate on Y , for which one might talk about Y being ‘compact’ and ‘oriented’. Betti stacks of compact
oriented manifolds (with or without boundary) will have these properties.

4 Orientation, compactness, transgression
The idea. We are kindly reminded of the following by [Pan+13, §2.1]. Let M be a compact oriented
manifold and N a symplectic manifold. Recall that smooth functions M → N make up a Fréchet manifold
F := Map(M,N). Consider

M ×Map(M,N).
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Forms on M and N can be pulled back to M ×F along the projection πM : M ×F → M and the evaluation
ev : M × F → N (which is smooth essentially by definition). Further, given a form η ∈ Ωp(M × F ), we may
integrate out M to get a form on F : ∫

M

η ∈ Ωp−dim(M)(F ).

In particular, for N symplectic with form ω, one can consider

η := π∗
M (1) ∧ ev∗(ω) ∈ Ω0+2(M × F ),

and evaluate
ω̃ :=

∫
M

η ∈ Ω2−dim(M)(F ).

This is said to make F symplectic. Even if you are not satisfied with this being a symplectic form, this idea
works perfectly in the stacky context.

Remark 4.1 (Coda – read at the end). As Artem mentioned, you would normally pullback the volume form
on M and not the function 1, and would then get a 2-form on F . The way PTVV present it is due to the
way they define orientation, which integrates functions, not top-forms. But this is misleading: even in the
Betti case these functions are Sing•(M,k), and the orientation class pairs with Singdim(M)(M,k, giving a
dim(M)-orientation. So the fully analogous thing to do in the differential geometry context would indeed
be to pullback the volume form, not 1. The shift by −dim(M) in 4.6 is thus not quite the −dim(M) in ω̃
above: the form degree doesn’t shift, but the integral degree shifts due to top cochains in RΓ(MB) being in
degree dim(M).

Notation 4.2. We write
RΓ(X,−) : QCoh(X) → k-mod,

or RΓ(−) when X is understood, for the forgetful functor induced by the forgetful functors A -mod → k-mod
on open affines. It is the derived-∞ version of global sections.

Definition 4.3. A stack Σ over Spec(A) is called O-compact over Spec(A) if

• OΣ ∈ QCoh(Σ) is a compact object, i.e. QCoh(OΣ,−) preserves (countable) homotopy-colimits (cf.
nLab), and

• for any E ∈ Perf(Σ), RΓ(E) is a perfect A-module.3

We say a stack Σ over k is O-compact if ΣA := Σ× Spec(A) is O-compact over Spec(A) for any A.

The point is, for any other stack Y , there is a natural map

DR•(Σ× Y ) → RΓ(OΣ)⊗DR•(Y ),

locally induced by PTVV’s affine Künneth formula and then by projecting to the function part. Künneth
glues mod w.e., and the projection glues mod w.e. by the compactness of OΣ. We have a restricted (induced)
a map

Ap(,cl)(Σ× Y ) → RΓ(OΣ)⊗Ap(,cl)(Y ).

Think of these decompositions as a Fubini theorem (for the moment pre-integration), so compactness cor-
responds morally to the ‘σ-finiteness’ of Σ× Y and the integrals over Σ× Y being finite.

It remains to integrate out the Σ-factor.
3[Pan+13] specifically says perfect A-module, while in [Cal14]; [Cal15] it seems to be perfect k-module.

5

https://ncatlab.org/nlab/show/compact+object+in+an+%28infinity%2C1%29-category


Definition 4.4. An m-orientation on Σ is a map

[Σ] : RΓ(OΣ) → k[−m]

such that, for any E ∈ Perf(Σ), the pairing

RΓ(E)⊗ RΓ(E∨) → RΓ(OΣ) → k[−m]

is non-degenerate. This means that the adjoint map

RΓ(ΣA, E) → RΓ(ΣA, E
∨)∨[−d]

is a weak equivalence for any E ∈ Perf(ΣA) and any A ∈ cdga≤0.

The notation [Σ] suggests that we think of this as integration against the fundamental class (the choice of
which is an orientation, after all). The pairing on gauge fields can be thought of as a generalised L2-pairing,
which first pairs in the fibres and then integrates against [Σ]. The non-degeneracy is a weak Hilbert condition.

Notation 4.5. For Σ m-oriented and O-compact, let∫
[Σ]

: Ap(,cl)(Σ× Y ) → Ap(,cl)(Y )[−d]

denote the composition of the Fubini map and [Σ]⊗ id.

In particular for Σ as above, for Y = Map(Σ× Y ) and for some ω ∈ Ap,cl(X,n), we have∫
[Σ]

ev∗ω ∈ Ap,cl (Map(Σ, X), n−m) .

Proposition 4.6 (Transgression). Let Σ, X and ω be as above. If ω is symplectic, Map(Σ, X) is (n−m)-
symplectic.

The non-degeneracy of
∫
[Σ]

ev∗ω follows straightforwardly from the non-degeneracy of the orientation, in the
special case of a symplectic pairing.

5 Oriented TFTs
It remains to transgress in the case with boundary.

Let Σ, Σ′ be O-compact, and ϕ : Σ → Σ′ be a map. Let [Σ] be an m-orientation on Σ, so that we an induced
map

ϕ∗[Σ] : RΓ(Σ′,OΣ′) → k[−m].

Definition 5.1. A boundary structure on ϕ is a path from ϕ∗[Σ] to 0.

Of course, there is a natural non-degeneracy condition on boundary structures, which is built so that our
TFTs will land in Lagrangian correspondences and not just isotropic ones. See [Cal15, §2.2.3].

Let X be a stack and ϕ : Σ → Σ′ be as above. Write

ev′ : Σ′ ×Map(Σ′, X) → X

and ∫
ϕ∗[Σ]

: Ap,cl(Σ′ ×Map(Σ′, X), n) → Ap,cl(Map(Σ′, X), n− d).

Non-degenerate boundary structures are mapped to Lagrangian structures. In symbols:
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Proposition 5.2. if ω ∈ A2,cl(X,n) is a symplectic form on X, the pullback

ϕ∗ : Map(Σ′, X) → Map(Σ, X)

has a Lagrangian structure, with the path from
∫
ϕ∗[Σ]

ev′ω to 0 induced by the boundary structure.

The non-degeneracy of the isotropic structure is massaged into the non-degeneracy of the boundary condition;
see the proof of [Cal15, Theorem 2.9]. Let now X be m-shifted symplectic

Proposition 5.3. The assignment

ZX := Map((−)B , X) : Bordorn → LagCorrm−(n−1)

is a symmetric monoidal functor.

Betti stacks coming from compact oriented manifolds (possibly with boundary) come with the expected
data for compactness, orientation and (non-degenerate) boundary structures; see [Cal15, §3.1]. Let us only
mention the following to motivate the boundary data: If N is oriented and closed, its fundamental class [N ]
gives an evaluation map Sing•(N,k) → k[−dim(N)]. Note that RΓ(ONB

) = Sing•(N,k). Lastly, when M
is oriented with boundary ∂M , its fundamental class [M ] is in relative top-degree homology, and is sent to
[∂M ] by the boundary map, which leads to a non-degenerate boundary structure under Betti. Al coda 4.1.
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