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Setting: what is an associator?



What is an associator?

Say you are in category C, and there is a product map

⊗ : C × C → C.

Think:

• rings, algebras...

• Vect, or the module category of a ring

• the representation category of a group/field/Lie algebra

• (virtual) bundles over a manifold

• modules over a sheaf on a scheme

• state spaces of point-particles in a discrete quantum-mechanical system

• ...
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Even in Vect, the usual tensor product is neither commutative nor associative.

Instead of commutativity, commutativity isomorphisms:

RA,B : A⊗ B
∼−→ B ⊗ A.

Similarly, associativity isomorphisms:

ΦABC : (A⊗ B)⊗ C
∼−→ A⊗ (B ⊗ C).
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Immediate problem: if we take different paths between the same domain and

target, will those paths be the same?

In symbols, say

(A1 ⊗ (A2 ⊗ A3))⊗ A4

..
00 (A3 ⊗ A1)⊗ (A4 ⊗ A2)

are two maps using only R’s and Φ’s. Are they the same?

If so, (C,⊗,R,Φ) is called coherent.

A priori, one has to check an infinite number of diagrams.
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Mac Lane’s coherence theorem reduces this to checking only 3 diagrams:

Two hexagons:

A(BC) // (BC)A

$$
(AB)C //

::

$$

B(CA)

(BA)C // B(AC)

::

(AB)C // C(AB)

$$
A(BC) //

::

$$

(CA)B

A(CB) // (AC)B

::

and a pentagon:

A(B(CD))

��

&&xx
A((BC)D)

��

(AB)(CD)

��
(A(BC))D // ((AB)C)D
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Terminology, instances

• We are skipping unit axioms, but these are usually fine.

• If R is an involution, checking one hexagon suffices. Then: symmetric

monoidal. Otherwise: braided monoidal, with braiding R.

• ‘R’: scattering matrices in quantum statistical mechanics, a.k.a.

‘R-matrices’. The hexagon = Yang–Baxter equation.

• ‘Braiding’: braid groups: RA,B crosses strand A over B. The (positive)

hexagon:

• No Φ with braids if they are not parenthesised. (They just sit next to each

other, ungrouped.) We will come back to this!
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Perspective 1: quantum groups



Prelude: Hopf algebras

Algebraisation of geometry: replace space X by a set C(X ) of functions.

Automatic algebra structure on C(X ) if it is nice:

• Functions can be added and multiplied pointwise,

• so C(X ) is a k-algebra for k the target field of the functions (interpret

scalars as constant functions).
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Each map X → Y has its pullback C(Y ) → C(X ) in the opposite direction.

E.g. an inclusion map induces a restriction map on functions / sheaves are

contravariant.

Thus, structure on X translates to opposite structure on C(X ).

If X = G is a group, the multiplication map

µ : G × G → G

induces a comultiplication map ∆ = µ∗ : C(G) → C(G × G). In nature, there

will be a ⊗ so that comultiplication looks like

∆: C(G) → C(G)⊗ C(G).
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If µ and ∆ on an associative algebra A interact as in the case A = C(G), then

A is called a bialgebra. When in addition there is an involution A → A acting

like the (pullback of the) inversion in G , then A is called a Hopf algebra.

One also has an augmentation ε : A → k landing in the ground field k, morally

coming from evaluation at the identity element of the group.

The representation category of a bialgebra A is monoidal via ∆:

a · (v1 ⊗ v2) := (∆(a)1 · v1)⊗ (∆(a)2 · v2) ∈ V1 ⊗ V2

where ∆(a)1/2 ∈ A denotes the first/second factor of ∆(a) ∈ A⊗ A.
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Relaxing commutativity

Let 1, 2 be A-modules. There are 2 ways to act with A on 1⊗ 2, namely

A
∆−→ A⊗ A

versus

A
∆−→ A⊗ A

σ−→ A⊗ A,

denoted by ∆′, where σ swaps the factors.

Assume we have an internal commutativity R, i.e. (by abuse of notation)

R ∈ A⊗ A, so that

∆′ = R∆R−1.

This R then (globally) realises the isomorphism(s)

1⊗ 2 ≃ 2⊗ 1.
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Relaxing associativity

Let 3 be another A-module.

Similarly, there are 2 ways to act with A on ‘1⊗ 2⊗ 3’ (without using σ or R),

namely

A
∆−→ A⊗ A

∆⊗id−−−→ A⊗ A⊗ A

versus

A
∆−→ A⊗ A

id⊗∆−−−→ A⊗ A⊗ A.

The corresponding A-modules are written (1⊗ 2)⊗ 3 and 1⊗ (2⊗ 3).

We may similarly ask for an internal Φ ∈ A⊗ A⊗ A such that

(id⊗∆)∆ = Φ((∆⊗ id)∆)Φ−1,

globally realising

(1⊗ 2)⊗ 3 ≃ 1⊗ (2⊗ 3).
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Relaxing commutativity and associativity

In Hopf algebras: Φ = 1A⊗A⊗A, R = 1A⊗A.

If we allow a Φ, we have a quasi-Hopf algebra. If we also allow an R, we have a

quasitriangular quasi-Hopf algebra.

We won’t be much interested in an antipode A → A, so we can just talk about

bialgebras and their weak versions.

For coherence, we must impose the hexagons and the pentagon. E.g., the

pentagon translates to

(id⊗ id⊗∆)(Φ) · (∆⊗ id⊗ id)(Φ) = (1A ⊗ Φ) · (id⊗∆⊗ id)(Φ) · (Φ⊗ 1A),

in A⊗4. The hexagons will feature both R and Φ.

There is some more minor structure that we are skipping for the moment (ε,

behaviour on scalars, etc.).
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Quantization

A central phenomenon in QP is that action is quantized. We have a unit of

action, called Planck’s constant, denoted by ℏ.

For classical systems (meso-/large-scale) (∼ low energies), effectively ℏ = 0,

whereas in small scales (∼ high energies) ℏ ̸= 0.

Another central phenomenon in QP: while in CP the algebra of observables is a

commutative algebra, with dynamics encoded by a Poisson structure {−,−}, in
QP, observables make up only an associative algebra. Dynamics is encoded by

the ordinary commutator [−,−] instead.
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For A0 a commutative algebra over k, an associative algebra A over k[[ℏ]] such
that

A/ℏA = A0

is called a quantization of A0.

Given A, we can define a Poisson bracket on A0 by

{a (mod ℏ), b (mod ℏ)} :=
1

ℏ
[a, b] (mod ℏ),

which is the ℏ1-term of [a, b].

Conversely, given a Poisson algebra A0, a quantization is an associative algebra

A over k[[ℏ]] with A/ℏA = A0 such that [−,−] on A and {−,−} on A0 are

related by the above formula.
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Central example

Let g0 be a Lie algebra over a field k, and

Ug0 =

⊕
l≥0

g⊗l
0

 / (a⊗ b − b ⊗ a ∼ [a, b])

its universal enveloping algebra.

Comultiplication:

∆(1) = 1⊗ 1

on the k-component (g⊗0
0 = k), and on the rest by Leibniz:

∆(a) = a⊗ 1 + 1⊗ a.

This is cocommutative and coassociative.
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We now ask for a Lie algebra g over k[[ℏ]], isomorphic as a topological

k[[ℏ]]-module to some V [[ℏ]] with V a k-vector space. We ask that

g/ℏg = g0,

and consider

A = Ûg,

the ℏ-adic completion of Ug.

We now look for R and Φ on A.

Assume R symmetric and g-invariant. Then there will exist some symmetric

g-invariant t ∈ g⊗ g such that

R = eℏt/2,

so we may construct R from some such t without restriction.
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Drinfeld’s theorem

Drinfeld, building on earlier foundational work of Kohno, showed in the late

80’s that given any such R, there exists a Φ (called a Drinfeld associator)

satisfying all the coherence conditions.

Moreover, Φ is unique up to gauge-invariance, which can be defined purely

algebraically.

To construct a Φ, he translated the commutation of the coherence diagrams to

the flatness of the Knizhnik–Zamolodchikov (KZ) connection, a basic object in

conformal field theory. This particular ΦKZ is known as the KZ associator.

(More on this later.) Later, other associators have also been constructed using

geometric methods.

This yielded a ‘universal formula’ for ΦKZ with C coefficients.

In a subsequent paper he showed that the Grothendieck–Teichmüller group acts

freely and transitively on the set of associators.

A rational associator was also obtained.

The absolute Galois group of Q (as well as its motivic version) can be

embedded into the Grothendieck–Teichmüller group. Thus, much of number

theory is hidden in the set of Drinfeld associators. 17



Overview of two other main perspectives

Knot theory: Bar-Natan gave an equivalent definition of a Drinfeld associator

as an equivalence between the categories of braids and chord diagrams (that

preserves some extra natural structure). (The connection to knot theory was

already explicit in earlier work of Kohno.) Thus, any Drinfeld associator gives a

universal Vassiliev invariant. The Kontsevich integral, a universal Vassiliev

invariant, is a direct recasting of the KZ associator. Even better, this is tightly

connected to determining (homotopy types of) more general embedding spaces

and Goodwillie–Weiss calculus.

Quantization: One may similarly ask for quantizations of a Poisson algebra

given by the algebra of functions on a Poisson manifold M: the (global) algebra

of observables of a classical scalar field theory. Kontsevich and later Tamarkin,

the latter building on earlier work of Etingof–Kazhdan, and in two different

approaches, showed that any Drinfeld associator gives such a quantization in

the local case (M = Rn). Kontsevich also gave an independent construction.

Even this case was open since the early days of QFT. Generalisations abound,

but are missing in some very important cases.
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What the f?

In a recent paper, Furusho has shown that in important cases (∼ in Drinfeld’s

original setting) the pentagon already implies the hexagons.

(Also, Bar-Natan purports to have given a simpler proof of Furusho’s theorem.)

I have not yet studied this and don’t know how to interpret it.
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Perspective 2: knot (Vassiliev) theory



Definitions

The braid group Bn on n strands is generated by the crossings: write simply σi

(1 ≤ i < n) for the crossing of strand i over i + 1. By a result of Alexander,

any knot is the closure of a braid.

There are two relations:

• Causality/spatial independence:

σiσj = σjσi

for |i − j | > 1;

• The hexagon:

σiσi+1σi = σi+1σiσi+1.

We may view a braid as a morphism in a category whose objects are finite

collections of points.

Better, we may make objects parenthesised collections of points, or

equivalently, introduce a notion of distance between the points. We may then

consider parenthesised braids as morphisms.

We no longer fix the number of strands.
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Face and degeneracy maps

We may also consider formal linear combinations (with coefficients from some

algebra) of braids as morphisms. This category, PaB, has more structure and

relations.

First, the face and degeneracy maps, denoted by si and di , respectively, that

act on braids:

• si deletes strand i ;

• di , on a braid b with n strands, for 1 ≤ i ≤ n, doubles strand i :

Also, d0 adds a straight strand on the left, dn+1 adds one on the right.
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Associators

PaB also includes the associators a±1:

So we want the parenthesised versions of the usual relations:
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Locality relations

Further, a full description of PaB would include the following locality relations:
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Chord diagrams

Paranthesised braids have a kind of linearisation, called chord diagrams. A

structure-preserving equivalence between braids and chords is equivalent to a

Drinfeld associator.

One way that we can talk about a ‘linearisation’ is vague but geometric: the

braid algebra (restricted to n strands) is isomorphic to

π1(Confn(C)),

while the algebra of chord diagrams (restricted to n strands) is essentially the

cohomology algebra

H∗(Confn(C)).

V. Arnold gave a generators-relations presentation of this cohomology in 1969.
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The result is that the cohomology is generated by 1-forms

ωij = d log(zi − zj) =
dzi − dzj
zi − zj

(1 ≤ i , j ≤ n)

that satisfy, three relations (with ∧ as product):

• symmetry: ωij = ωji ;

• locality: [ωij , ωkl ] = 0 for i , j , k, l all different;

• 4T or Arnold’s relations: [ωjk , ωij + ωik ] = 0 for i , j , k all different.

These ωij will appear again in the KZ connection/associator.

The name ‘4T’ is no coincidence: our chord diagram algebra will indeed be the

chord diagram algebra for finite-type Vassiliev invariants. It is isomorphic to the

associated graded of PaB with respect to the ‘augmentation ideal’ I containing

the (combinations of braids)
∑

aiBi such that
∑

ai = 0 in the base algebra.

The 4T relation can be interpreted as a linear version of the hexagon. In a way,

the hexagon is the ‘Lie group’ version, and 4T is the induced relation in the

‘Lie algebra’. (More on this below.)
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Let us now define PaCD. Its objects are the same as PaB, i.e.

parenthesisations. Its morphisms are formal linear combinations of expressions

D · P

where

• P: parenthesised permutation (source and target fixed, say with n points);

• D: from the algebra Apb
n over some base algebra (most importantly C or

Q), generated by t ij , 1 ≤ i ̸= j ≤ n, satisfying the three relations above.

Composition is a bit unnatural at first sight, because the chords tij are not

ordered in time inside the permutation P, in contrast to the crossings in PaB.

Let us mention the example Bar-Natan gives.

26



The convention is to push down the chords after composing on the nose. This

changes the i , j in t ij .

Caution: I follow the opposite ordering convention to Bar-Natan’s.
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Final structure

There are related face and degeneracy si , di maps on PaCD.

There is a natural coproduct on braids

□ : PaB → PaB⊗ PaB

with ⊗ naturally defined. Also, a coproduct

□ : PaCD → PaCD⊗ PaCD

is defined by

□t ij = t ij ⊗ 1 + 1⊗ t ij .

Lastly, one considers natural completions

P̂aB and P̂aCD.

Let B̂ and Ĉ denote P̂aB and P̂aCD with all the extra structure, including the

braidings (next slide for the braiding in chords).
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Braiding in chords

Clearly, PaCD is generated (via the di ), in suggestive notation, by

a±,X ,H.

We specify the braiding in chords as

R̃ = exp(−1

2
H) · X

so that R̃2 = exp(H).

We will require a structure-preserving functor

Ẑ : B̂ → Ĉ

to send

σ 7→ R̃.

(There are good reasons for this, but I cannot go into it.)

29



Equivalences

There are forgetful functors B̂, Ĉ → PaP that take the underlying

parenthesised permutations.

An equivalence is a structure-preserving functor

Ẑ : B̂ → Ĉ

over PaP.

It is ‘easy’ to see that such a Ẑ is determined by its value on a:

Ẑ(a) = ΨZ · a

where ΨZ ∈ Apb
3 .

One can see that the equations this ΨZ has to satisfy mean that this is

equivalent to giving a Drinfeld associator.
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Perspective 3: Kontsevich

formality/Deligne’s conjecture



Because talking about this will require a lot of background, let me just say the

following.

Kontsevich’s deformation quantization theorem is a (not exactly trivial)

consequence of his formality theorem. We will look at the affine algebraic case.

Let A be a polynomial algebra, HC∗(A;A) its Hochschild cochain complex with

values in A,

HC n(A;A) = Hom(A⊗n,A)

with the differential at degree n given by

(−1)n(df )(a0, . . . , an) = a0f (a1, . . . , an)−
n−1∑
0

(−1)i f (a0, . . . , aiai+1, . . . , an)

+ (−1)n−1f (a0, . . . , an−1)an.

This is the dual of the more familiar homological version. The cohomology is

denoted by HH∗(A;A).
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Gerstenhaber structure

One can identify HC∗[1] with the coderivations of the cofree coalgebra

cogenerated by A[1]. Indeed, HC∗[1] is a dg Lie algebra. The differential is

induced by the multiplication µ on A.

Even better, there is a multiplication m on HC∗:

m(x ⊗ y) = µ ◦ (x ⊠ y).

In cohomology, these structures make HH∗ a Gerstenhaber algebra. That is,

the induced multiplication is commutative and associative, and the induced

bracket is a derivation with respect to the induced multiplication.

This is also called a P2-algebra structure on HH∗, i.e. a Poisson structure

where the bracket has degree −1.
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Formality, Deligne’s conjecture

The formality theorem states that HC∗ is formal, i.e. in the homotopy category

of dg Lie algebras it is isomorphic to its cohomology HH∗.

Now, Tamarkin proved that the chains operad C∗E2 of little 2-disks is formal,

and by F. Cohen’s earlier work we know that H∗E2 ≃ P2, so

C∗E2 ≃ P2.

This can be used to prove Deligne’s conjecture, that the Gerstenhaber

structure descends from a C∗E2-structure.

Once one has this, the formality theorem can be proved (as was done by

Tamarkin) using Halperin–Stasheff theory, an obstruction theory for formality,

and some ideas from operadic Koszul duality.

Choosing an underlying homotopy-algebra structure depends on the choice of a

Drinfeld associator (as the construction goes through Etingof–Kazhdan

quantization theory).
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Perspective 4: coherence in higher

categories/combinatorics



A few words on Kapranov, Voevodsky, Manin–Schechtman braids, etc.
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Geometric construction



Let R = eℏt/2 where t ∈ g⊗ g ⊂ (Ug)⊗2 is symmetric and g-invariant. We are

looking for an associator Ψ.

Morally, Ψ should ‘pass from the parenthesisation 1(23) to (12)3’. Drinfeld’s

idea was to replace different parenthesisations by asymptotic zones, as follows.

Consider the following differential equation in (Ug)⊗3[[ℏ]], x ∈ (0, 1):

G ′(x) = ℏ
(
t12

x
+

t23

x − 1

)
G(x)

where t12 := t ⊗ 1, t23 = 1⊗ t, and we impose the asymptotic behaviour

G1(x) ∼ xℏt12 for x → 0

G2(x) ∼ (1− x)ℏt
23

for x → 1.

The idea is to define Ψ by requiring

G1 = G2Ψ.

This is easily shown to determine a constant Ψ.

35



The KZ connection

One must check that this Ψ satisfies the defining relations, including the

pentagon and the two hexagons with respect to our R.

For example, the pentagon will concern various images (via ∆) of Ψ in

(Ug)⊗4[[ℏ]]. The generalisation of the system above reads

∂iW = ℏ
∑
j ̸=i

t ij

zi − zj
W i = 1, 2, . . . , n

with W (z1, . . . , zn) ∈ (Ug)⊗n[[ℏ]] and real zi .

Originally, this comes from the connection

∇KZ = d − (coeff)
∑

t ij
dzi − dzj
zi − zj

,

called the KZ connection, so the system says that W is a horizontal path with

respect to ∇KZ .

In the setting of CFT, ∇KZ is a connection on the so-called conformal block

bundle over Confn(C) or Confn(CP1).
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The point of all this is that ∇KZ is flat (Drinfeld calls it self-consistent – this is

what that means), i.e. its curvature vanishes.

This can be shown directly using the Arnold relations. More specifically, the

Arnold relations imply, writing ∇KZ = d − ω, that

ω ∧ ω = 0.

Combining this with the easy dω = 0, it follows that ∇KZ is flat, since its

curvature is

dω + ω ∧ ω.

THIS IS ABSOLUTELY FANTASTIC NEWS.
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E.g. the pentagon

To check the pentagon, we set n = 4. Consider the system over the domain

{(z1, z2, z3, z4) ∈ R4|z1 > z2 > z3 > z4},

where we distinguish five asymptotic zones that correspond to that five

parenthesisations:

z1 − z2 ≪ z1 − z3 ≪ z1 − z4 ((12)3)4

z2 − z3 ≪ z1 − z3 ≪ z1 − z4 (1(23))4

z2 − z3 ≪ z2 − z4 ≪ z1 − z4 1((23)4)

z3 − z4 ≪ z2 − z4 ≪ z1 − z4 1(2(34))

z1 − z2 ≪ z1 − z4, z3 − z4 ≪ z1 − z4 (12)(34).

One can generalise the asymptotic behaviours of G1,G2 to define solutions

W1, . . . ,W5 with clever asymptotic behaviours.
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The Wi thus defined, it is a direct algebraic check that we have

W1 = W2(Ψ⊗ 1) W1 = W5(∆⊗ id⊗ id)(Ψ)

W2 = W3(id⊗∆⊗ id)(Ψ) W5 = W4(id⊗ id⊗∆)(Ψ)

W3 = W4(1⊗Ψ)

Now the flatness of ∇KZ implies that whichever way one passes say from W1 to

W5, the result will be the same.

Indeed, an equivalent definition of flatness is that holonomy depends only on

the homotopy class of the chosen path. Thus, the commutation of the

pentagon is translated to the homotopy-invariance of the holonomy of a flat

connection. The hexagons can be checked similarly.

So, Ψ is indeed a Drinfeld associator.
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Further directions



• Higher gauge-theoretic analogues of the KZ construction (contains issues

about the connection)

• Higher braids...

• Shifted Poisson structures / analogues of chord diagrams?

• ‘Extended quantization’: what if the manifold has boundaries, corners...

and defects, etc.?(ongoing work)

• Are there analogues of Grothendieck–Teichmüller? Belyi’s theorem? → do

‘higher dimensional’ absolute Galois groups embed? Motivic stuff?

• ...
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