Geometric factorisation algebras and Morita theory

Ödül Tetik

Universität Zürich

24 June 2022 Defects and Symmetry King's College London Duality: factorisation homology \leftrightarrow functorial field theories?

FH: homology theories at chain level:

input: disk-algebra A fitting the geometry of spacetime X, e.g. a framed *n*-disk-algebra for framed *n*-manifold X Nonphysical: A ≡ Z or twisted abelian coefficients

output: 'global observables' ∫_X A by gluing (colimit/coend), e.g. A ≡ Z produces singular chains; associative A → ∫_{S1} A = HC(A), Hochschild chains. Goresky–MacPherson's intersection homology is another special case.

FH 'composes in the opposite way':

- ► FFTs: gluing
- ► FH: 'merging' or 'collapsing'; morphisms prescribed by cutting

More concretely:

- ► FFTs: composition of maps
- ► FH: tensor/monoidal products

No wonder:

- ► FFTs: time evolution of **states**
- FH: translates gluing on the underlying spacetime to the gluing of **observables**

Calaque–Scheimbauer, goes back to Lurie: FFTs from FH: **framed, fully extended**

- ▶ input: an *E_n*-algebra ≃ a framed *n*-disk algebra (This is generic by a result of Ayala et al.: any FH theory on framed *n*-manifolds is uniquely determined by an input *E_n*-algebra.)
- ► output: f.e. FFT with values in Mor_n(T), the/a Morita category of E_n-algebras (in some target s-m ∞-category T)

How?

Take framed collar neighbourhoods, evaluate FH, use Lurie's result that

 E_k -algebras \simeq locally constant factorisation algebras on \mathbb{R}^k to land in $\operatorname{Mor}_n(\mathcal{T})$. Indeed, in $Mor_n(\mathcal{T})$:

0: *E_n-alg*

1: E_{n-1} -alg with compatible E_n -actions (source and target)

2: E_{n-2} -alg with compatible E_{n-1} -actions (with compatible actions on these themselves), etc.

Composition: Merge by tensoring:

$$_{A}M_{B}, _{B}N_{C} \rightsquigarrow _{A}(M \otimes_{B} N)_{C}$$

In terms of FAs, pushforwards along collapse maps

FAs more general than FH:

Input algebra A for FH \rightsquigarrow I.c. FA F from local data $\rightsquigarrow \int_X A = F(X)$

E.g. in Lurie's theorem:

$$F(\mathbb{R}^k)$$
 gives back the E_k -algebra

or rather its underlying object:

$$F(X) = p_*F$$
 where $p: X \to *$

Simplification to E_k -algs possible due to topological reasons Physically too restrictive: only framed theories allowed Need: new target Morita categories of FAs beyond framed Hence **first need**: FAs sensitive to geometric structure Today: only **tangential** structure, but very general:

► Stratified spaces (boundaries, corners, defects) allowed

Stratified tangential structures allowed:

any $\infty ext{-category} \ \mathcal{B} o \mathcal{V}^{\mathrm{inj}}$

where $\mathcal{V}^{\mathrm{inj}}$ is $B\mathrm{GL}$ with injections allowed

(Stratified FAs needed for target, even if 'not' for input!)

A (conically-smooth) stratified space X:

continuous $X \rightarrow P$, P = stratifying poset

& useful smoothness properties.

 $\Pi_{\infty}X \rightsquigarrow \mathbf{Ex}(X)$: the **exit path** ∞ -category (Lurie–MacPherson–Ayala–Francis–Rozenblyum)

'Bundles' \rightsquigarrow functors out of $\mathbf{Ex}(X)$

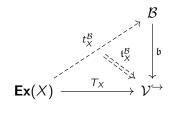
 $\mathcal{T}_X \colon \mathbf{Ex}(X) \to \mathcal{V}^{\mathrm{inj}}$

Interaction among strata over links:

(path space from X_p to X_q) $\simeq L_{pq}$

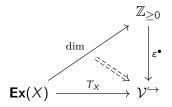
 T_X gives bundle map over L_{pq}

\mathcal{B} -reductions:



$$\mathcal{B}$$
-red $(X) = \mathcal{M}ap_{/\mathcal{V}} (\mathbf{Ex}(X), \mathcal{B})$

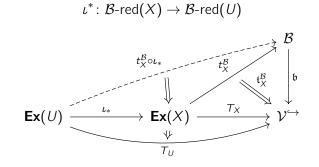
Variframings:



 \mathcal{B} -red: (pre)sheaf on stratified spaces and open embeddings:

$$\iota\colon U \hookrightarrow X$$

 \sim



We are led to the **space of** \mathcal{B} **-open structures** on ι :

$$\mathcal{B}$$
-open_X(ι) = $\mathcal{M}ap^{\sim}_{/\iota^* T^{\mathcal{B}}_X}(*, \mathcal{B}$ -red(U))

and we write

$$T^{\mathcal{B}}_{\iota} \in \mathcal{B} ext{-open}_{X}(\iota)$$

Smooth sanity check via HTT 5.5.5.12

pFA on X with coefficients in s-m ∞ -category \mathcal{T} :

algebra over \mathcal{O}_X :

objects: opens of X

k-multihoms:
$$\mathcal{O}_X(U_1, \ldots, U_n | V) = \begin{cases} *, & \text{if } \coprod U_i \subseteq V \\ \emptyset, & \text{else} \end{cases}$$

factorising precosheaf:

$$(\mathcal{T}, \otimes) \rightsquigarrow \underline{\mathcal{T}}(a_1, \ldots, a_n \mid b) \coloneqq \mathcal{T}(a_1 \otimes \cdots \otimes a_n, b)$$

Two natural generalisations:

$$\mathcal{O}_X \rightsquigarrow \widehat{\mathbb{O}}_X^{\mathcal{B}}$$
 and $\mathbb{O}_X^{\mathcal{B}}$

objects:

$$\coprod_{\iota: U \hookrightarrow X} \mathcal{B}\text{-open}_X(\iota)$$

multihoms in $\widehat{\mathbb{O}}_X^{\mathcal{B}}$:

$$\widehat{\mathbb{O}}_{X}^{\mathcal{B}}(\alpha_{1},\ldots,\alpha_{k} | \beta) = \begin{cases} \prod \widehat{X}^{\mathcal{B}}(\alpha_{i} | \beta), & \text{if } \coprod U_{\alpha_{i}} \subseteq U_{\beta} \\ \emptyset, & \text{else} \end{cases}$$

where

$$\widehat{X}^{\mathcal{B}}(\alpha \,|\, eta) = \mathcal{B} ext{-red}_{\alpha}(\, T^{\mathcal{B}}_{\alpha}, \, \iota^{*}_{\alpha\beta}\, T^{\mathcal{B}}_{\beta}).$$

multihoms in $\mathbb{O}_X^{\mathcal{B}}$:

$$\mathbb{O}_{X}^{\mathcal{B}}(\alpha_{1},\ldots,\alpha_{k} | \beta) = \begin{cases} \prod X^{\mathcal{B}}(\alpha_{i} | \beta), & \text{if } \coprod U_{\alpha_{i}} \subseteq U_{\beta} \\ \emptyset, & \text{else} \end{cases}$$

where

$$X^{\mathcal{B}}(\alpha \,|\, \beta) = \mathcal{B} ext{-red}_{\alpha}(T^{\mathcal{B}}_{\alpha}, \alpha^* T^{\mathcal{B}}_{\beta})_{/\mathfrak{e}_{\alpha\beta}}$$

where

$$\mathfrak{e}_{\alpha\beta}\colon T^{\mathcal{B}}_{\alpha} \xrightarrow{\sim} \iota^*_{\alpha\beta} T^{\mathcal{B}}_{\beta}$$

is the 'canonical equivalence' through X.

Such inclusions of \mathcal{B} -opens: **ambient-compatible**.

Invariant reformulation:

$$\mathcal{B}\operatorname{-red}_{\alpha}(T^{\mathcal{B}}_{\alpha}, \alpha^* T^{\mathcal{B}}_{\beta})_{/\mathfrak{e}_{\alpha\beta}} \simeq \mathcal{B}\operatorname{-open}_{X}(\alpha)(T^{\mathcal{B}}_{\alpha}, \iota^*_{\alpha\beta} T^{\mathcal{B}}_{\beta})$$

so this is the 'over- ∞ -category over $(X, T^{\mathcal{B}}_{X})$ ' approach.

Without this, we cannot decompose structure maps.

Given nested \mathcal{B} -opens $U_{\alpha} \hookrightarrow U_{\beta} \hookrightarrow U_{\gamma}$,

$$\widehat{\circledast} \colon \widehat{X}^{\mathcal{B}}(U_{\alpha} \mid U_{\beta}) \times \widehat{X}^{\mathcal{B}}(U_{\beta} \mid U_{\gamma}) \to \widehat{X}^{\mathcal{B}}(U_{\alpha} \mid U_{\gamma})$$

in the obvious way.

Lemma

Multiplication descends to the hatless version.

Thus:

$$\widehat{\circledast} : \widehat{\mathbb{O}}_{X}^{\mathcal{B}}(\boldsymbol{\alpha} \mid \boldsymbol{\gamma}) \times \widehat{\mathbb{O}}_{X}^{\mathcal{B}}(\boldsymbol{\beta}_{1} \mid \alpha_{1}) \times \cdots \times \widehat{\mathbb{O}}_{X}^{\mathcal{B}}(\boldsymbol{\beta}_{k} \mid \alpha_{k}) \rightarrow \widehat{\mathbb{O}}_{X}^{\mathcal{B}}(\boldsymbol{\beta}_{1}, \dots, \boldsymbol{\beta}_{k} \mid \boldsymbol{\gamma})$$

with finite families of nested \mathcal{B} -opens, as well as the hatless version.

Definition An $\widehat{\mathbb{O}}_{X}^{\mathcal{B}}$ -algebra: \mathcal{B} -**pFA**. An $\mathbb{O}_{X}^{\mathcal{B}}$ -algebra: **ambient** \mathcal{B} -**pFA**.

Decomposition:

$$F(b) \xrightarrow[e_{ba}^{F}]{e_{ba}^{F}} F(a) \xrightarrow[e_{ac}^{F}]{e_{ba}^{F}} F(c),$$

always h-commutes if F is ambient, otherwise not.

Example

$$\underline{S^1} = (\mathcal{V}^{\text{inj}} \times S^1) \text{-pFAs on } *.$$

Generally: **spaces** of structure maps between observables at nested $\mathcal{B}\text{-}\mathsf{opens}$:

$$X^{\mathcal{B}}\left(\coprod \alpha_{i} \mid \beta\right) \rightarrow \mathcal{T}\left(\bigotimes F(\alpha_{i}), F(\beta)\right)$$

Ambient \Rightarrow **connected**.

Towards \mathcal{B} -FAs

Can adapt Čech:

$$\check{\mathcal{C}}_{k}^{F}(\mathbf{U}) \coloneqq \check{\mathcal{C}}_{k}(\mathbf{U};F) \coloneqq \coprod_{\mathsf{A} \in \mathsf{PU}^{k+1}} \bigotimes_{\boldsymbol{\alpha} \in \mathsf{A}} F\left(\bigcap_{\alpha_{i} \in \boldsymbol{\alpha}} \alpha_{i}\right)$$

comes with

$$(-)^{F}: \mathbb{O}_{X}^{\mathcal{B}}(\cap \boldsymbol{\alpha} \mid \cap \boldsymbol{\alpha}^{\widehat{l}}) \to \mathcal{T}(F(\cap \boldsymbol{\alpha}), F(\cap \boldsymbol{\alpha}^{\widehat{l}}))$$

instead of just single such maps $F(\cap \alpha) \to F(\cap \alpha^{\widehat{I}})$.

In fact, we have maps

$$\mathbb{O}_X^{\mathcal{B}}(\check{\mathcal{C}}_n\,|\,\check{\mathcal{C}}_m) \to \mathcal{T}(\check{\mathcal{C}}_n^{\mathsf{F}},\check{\mathcal{C}}_m^{\mathsf{F}})$$

where

$$\mathbb{O}_X^{\mathcal{B}}(\check{\mathcal{C}}_n \,|\, \check{\mathcal{C}}_m) \coloneqq \coprod_{\rho \in \boldsymbol{\Delta}([m], [n])} \prod_{A \in P \cup^{n+1}} \prod_{\boldsymbol{\alpha} \in A} \mathbb{O}_X^{\mathcal{B}}(\cap \boldsymbol{\alpha} \,|\, \cap \, \rho^* \boldsymbol{\alpha}).$$

Organised by an ∞ -category ${f \Delta}^{{\mathcal B}}_X({f U})$

objects: same as $\pmb{\Delta}$

morphisms: $\mathbf{\Delta}_{X}^{\mathcal{B}}(\mathbf{U}) = \mathbb{O}_{X}^{\mathcal{B}}(\check{\mathcal{C}}_{m} \,|\, \check{\mathcal{C}}_{n})$

Definition

The ambient *B*-Čech complex:

$$\check{\mathcal{C}}_{\bullet}(\mathbf{U}; F) \in \mathsf{pSh}(\mathbf{\Delta}_X^{\mathcal{B}}; \mathcal{T})$$

Proposition (sanity check on 0-truncations)

$$|\mathbf{\Delta}_{X}^{\mathcal{B}}| \simeq \mathbf{\Delta}$$
$$|\check{\mathcal{C}}_{\bullet}^{\mathsf{F}}| \simeq \check{\mathcal{C}}_{\bullet}^{|\mathsf{F}|}$$

Possibly noncontractible choices in the non-ambient version.

(Weiss/factorising) cosheaf condition via

$$\mathfrak{e}_k^F \colon \check{C}_k^F \to F(U)$$

and

Proposition

 $\mathfrak{e}_{\bullet}^{\mathsf{F}} \colon \check{\mathcal{C}}_{\bullet}^{\mathsf{F}} \to \mathsf{F}(U)$ lifts to a cocone, natural in U, **U**.

Local constancy: analogous

 $Mor_n^{\mathcal{B}}(\mathcal{T})$

l.c. \mathcal{B} -FAs on \mathbb{R}^n with flag-type defects

objects: such FAs on \mathbb{R}^n

1-morphisms: with hyperplane defect

2-morphisms: hyperplane defect with codim-2 plane defect, etc.

Compositions: pushforwards along collapse maps (still possible!) Specific to AFR's constructible tangent bundle

Novel phenomena, questions

No additivity, even with variframings, already on \mathbb{R}^3 with a line defect.

Essentially because $\pi_4(S^2) \neq *$.

Invariant reason: structure on **links** does not decompose additively.

Q: To what extent is this an issue?

Poisson: Conjecture/Ansatz: $P_0(Mor^B)$ is enough. *Physical sanity check (scalar field theory: joint with N. Capacci) depends on:* The Safronov(–Melani) strict Poisson centre is the categorical centre (à la Lurie).

This is claimed by Safronov.

Q for quantisation: Is the Beilinson–Drinfeld operad additive? What is the *BD*-centre?

Nontopological geometric structures: our *ambient* \mathcal{B} -FA theory should lift to Grady–Pavlov's classifying space approach to such geometric structures.

Q/C: The Grady–Pavlov geometric cobordism hypothesis classifies such structured FAs.

*B***-Čech nerve theorem?** Stratified Artin–Mazur? The $\widehat{\mathbb{O}}/\mathbb{O}$ distinction like big/little étale site on $(X, T_X^{\mathcal{B}})$.

(a-) \mathcal{B} -FA(X, $T_X^{\mathcal{B}}$) is the (small) factorising cosheaf topos of (X, $T_X^{\mathcal{B}}$).

. . .

Thank you for listening!

References

- ► Ayala, Francis, Rozenblyum (2017), *A stratified homotopy hypothesis*, 1502.01713
- ____ (2020), Factorization homology I: Higher categories, 1504.04007
- Ginot (2014), Notes on factorization algebras, factorization homology and applications, 1307.5213
- ► Lurie (2009), *Higher Topos Theory*
- ► Lurie (2009), On the Classification of Topological Field Theories, 0905.0465
- ► Lurie (2017), Higher Algebra
- Safronov (2017), Lectures on shifted Poisson geometry, 1709.07698
- Scheimbauer (2014), Factorization Homology as a Fully Extended Topological Field Theory