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Duality: factorisation homology < functorial field theories?

FH: homology theories at chain level:

» input: disk-algebra A fitting the geometry of spacetime X,
e.g. a framed n-disk-algebra for framed n-manifold X
Nonphysical: A = Z or twisted abelian coefficients

> output: ‘global observables’ [, A by gluing (colimit/coend),
e.g. A = Z produces singular chains;
associative A~ [o; A= HC(A), Hochschild chains.
Goresky—MacPherson's intersection homology is another
special case.



FH ‘composes in the opposite way':
» FFTs: gluing

» FH: ‘merging’ or ‘collapsing’; morphisms prescribed by
cutting

More concretely:
» FFTs: composition of maps

» FH: tensor/monoidal products
No wonder:

» FFTs: time evolution of states

» FH: translates gluing on the underlying spacetime to the
gluing of observables



Calaque—=Scheimbauer, goes back to Lurie:
FFTs from FH: framed, fully extended

» input: an E,-algebra ~ a framed n-disk algebra
(This is generic by a result of Ayala et al.: any FH theory on
framed n-manifolds is uniquely determined by an input
En-algebra.)

» output: f.e. FFT with values in Mor,(7), the/a Morita
category of £,-algebras (in some target s-m oo-category T)



How?

Take framed collar neighbourhoods, evaluate FH, use Lurie's
result that

Ex-algebras ~ locally constant factorisation algebras on R¥

to land in Mor, (7).



Indeed, in Mor,(7):
0: Ey-alg
1: E,_1-alg with compatible Ep-actions (source and target)

2: E,_»-alg with compatible E,_1-actions (with compatible
actions on these themselves), etc.

Composition: Merge by tensoring:
aMp, BNc ~  A(M®p N)c

In terms of FAs, pushforwards along collapse maps



FAs more general than FH:

Input algebra A for FH ~~ |.c. FA F from local data
~ fXA = F(X)

E.g. in Lurie's theorem:
F(R¥) gives back the Ej-algebra
or rather its underlying object:

F(X) = p«F where p: X —



Simplification to Ex-algs possible due to topological reasons
Physically too restrictive: only framed theories allowed
Need: new target Morita categories of FAs beyond framed

Hence first need: FAs sensitive to geometric structure



Today: only tangential structure, but very general:
» Stratified spaces (boundaries, corners, defects) allowed

» Stratified tangential structures allowed:

any oo-category B — V'™

where V™ is BGL with injections allowed

(Stratified FAs needed for target, even if ‘not’ for input!)



A (conically-smooth) stratified space X:
continuous X — P, P = stratifying poset

& useful smoothness properties.

Moo X ~» Ex(X): the exit path oo-category
(Lurie=MacPherson—Ayala—Francis—Rozenblyum)

‘Bundles’ ~~ functors out of Ex(X)

Tx: Ex(X) — Vi

Interaction among strata over links:
(path space from X, to Xg) =~ Lpg

Tx gives bundle map over Lpg



B-reductions:
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B-red(X) = Map - (Ex(X), B)

Variframings:




B-red: (pre)sheaf on stratified spaces and open embeddings:
t:U—=X

>

(1 B-red(X) — B-red(U)




We are led to the space of B-open structures on ¢:
B-openx(t) = Map’. Tf(*’ B-red(U))

and we write
T5 € B-openx (1)

Smooth sanity check via HTT 5.5.5.12



Recall

pFA on X with coefficients in s-m oco-category T :
algebra over Ox:

objects: opens of X

. IfJ[JUcV
k-multihoms: Ox(Us, ..., Un| V)= {; | |H :
, else

factorising precosheaf:



Two natural generalisations:
Ox ~ @53( and (O)i
objects:

H B-openx(t)

L: U—>X

multihoms in @ﬁ:

- {Hiﬁ(a,m), if 11 Us, € Up

0, else

XB(a|B) = B-reda(TE, 125 TE).



multihoms in (O)’f(:

[TX5(i|B), if ITUa C Up
0, else

@ﬁ(al ..... ak|ﬁ) = {

where
XB(a|B) = B-reda(TZ, " T§) /ey
where
¢aB " Tf — L;ﬁ Tg

is the ‘canonical equivalence’ through X.

Such inclusions of B-opens: ambient-compatible.



Invariant reformulation:
B—reda(Tg, a* Tg)/eaﬁ ~ B—openx(a)(Tf, Lzﬁ Tg)
so this is the ‘over-oo-category over (X, T)’?)’ approach.

Without this, we cannot decompose structure maps.



Given nested B-opens Uy — Ug < Uy,
®: XB(Us | Ug) x XB(Ug | Uy) = XB(Ua | Uy)

in the obvious way.

Lemma

Multiplication descends to the hatless version.

Thus:

~

®: 0% (a|y)x0%(By | a1)x---x08(By | ax) — O (B,

with finite families of nested B-opens,
as well as the hatless version.

.....



Definition
An @fﬁ—algebra: B-pFA.
An @f”(—algebra: ambient B-pFA.

Decomposition:

F
€he

F(b) = F(a)—3 F(c),

eba €ac
always h-commutes if F is ambient, otherwise not.

Example
St = (VM x S1)-pFAs on x.



Generally: spaces of structure maps between observables at
nested B-opens:

X5 ([Tes18) > T (@ Fle). F(B)

Ambient = connected.



Towards B-FAs

Can adapt Cech:

L) =Cu;F) = ] ®F<ﬂ )
AcpPUKt a€A aica
comes with

(0)F: 08(na| Nnal) = T(F(Na), F(Na'))

instead of just single such maps F(Na) — F(ﬂa7).



In fact, we have maps

0% (Cp|Cm) — T(CE,CF)

0%@alCm)= I  II II0%(alnea).

pEA([m].[n]) AepPU T a€A

Organised by an oo-category AI;(U)

objects: same as A

morphisms: A% (U) = 0%(C,, |Cy)



Definition

The ambient B-Cech complex:
Co(U; F) € pSh(AE; T)
Proposition (sanity check on O-truncations)

A%~ A
ICF| ~ ¢lF

Possibly noncontractible choices in the non-ambient version.



(Weiss/factorising) cosheaf condition via
er: Cf — F(U)
and

Proposition

el : C — F(U) lifts to a cocone, natural in U, U.

Local constancy: analogous



Mor®(T)

l.c. B-FAs on R" with flag-type defects

objects: such FAs on R”
1-morphisms: with hyperplane defect
2-morphisms: hyperplane defect with codim-2 plane defect, etc.

Compositions: pushforwards along collapse maps (still possible!)
Specific to AFR’s constructible tangent bundle



Novel phenomena, questions

No additivity, even with variframings, already on R3 with a line
defect.

Essentially because m4(S?) # *.

Invariant reason: structure on links does not decompose
additively.

Q: To what extent is this an issue?

Poisson: Conjecture/Ansatz: Po(Mor®) is enough.

Physical sanity check (scalar field theory: joint with N. Capacci)
depends on: The Safronov(—Melani) strict Poisson centre is the
categorical centre (a la Lurie).

This is claimed by Safronov.

Q for quantisation: Is the Beilinson—Drinfeld operad additive?
What is the BD-centre?



Nontopological geometric structures: our ambient B-FA theory
should lift to Grady—Pavlov's classifying space approach to such
geometric structures.

Q/C: The Grady—Pavlov geometric cobordism hypothesis
classifies such structured FAs.

B-Cech nerve theorem? Stratified Artin—Mazur?
The O/ distinction like big/little étale site on (X, TX).

(a-)B-FA(X, T&) is the (small) factorising cosheaf topos of
(X, T%).



Thank you for listening!
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