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For concreteness, first the framed case, but it will be clear from the generality of
the treatment that this is no restriction.

Given a framed n-disk algebra, goal: construct fully extended n-dimensional FFT.
We do framed first because ideally the construction should reproduce Lurie’s sug-
gestion in that case (which it does). Also, one can allow an input disk algebra with
defects in the exact same way, and get extended FFTs with defects.

We give a solution up to a conjecture, in the form of an ‘integration problem’ (of
an ‘étalé space’ and a related much smaller space).

An n-framing on a bordism M , 0 ≤ dimM ≤ n, is a trivialisation of TM⊕εcodimM .
This is called a stable n-framing.

Less strictly, seeing M canonically as a stratified space, we may ask that it possess
a solid n-framing.

Namely, let V↪→ denote the stratified Grassmannian, and let

∗n → V↪→

be the tangential structure for n-framings, which is the map from the point that
picks out the object Rn ∈ V↪→.

It has a right fibration replacement

s∗n ≃ V↪→/Rn → V↪→,

the projection from the slice.

A stratified space M together with a (homotopy-)lift of its tangent bundle

TM : Ex(M)→ V↪→

to s∗n is called solidly n-framed.

Explicitly, a solid n-framing on M is the datum of an embedding TM ↪→ εn,
whereas stable is the extra datum of a trivialisation of the normal bundle; so

stable ⇒ solid

If M is just a bordism, the two structures are equivalent due to the existence of
nowhere-zero inward-pointing vector fields.

If Mn is just a smooth manifold (no boundary or defects), then ∗n ≡ s∗n on M .

Date: 12th October 2022.
1



2 ÖDÜL TETIK

Key bug/feature: a ∗n-disk algebra can only evaluate ∗n-manifolds, not s∗n-
manifolds.

A rapid course on the Grothendieck construction(s).

Let Cat∞ denote the ∞-category of ∞-categories (only invertible natural trans-
formations).

There is a universal bundle

Z

target

��

Cat∞

where Z is the full sub-∞-category

Cat∞
[1]-span ⟨[C/x→ C]⟩

of the arrow category Cat∞
[1]. This is a coCartesian fibration. We canonically have

Z|C ≃ C

for each fibre.

For any C, one can consider the ‘right-internal-Yoneda embedding’

RC : C→ Cat∞/C→ Cat∞

x 7→ [C/x→ C] 7→ C/x

(pushforward on morphisms)

whose image is Z|C, so equivalent to C itself.

The covariant Grothendieck construction at C can be written concretely as the
pullback ∫

RC := lim
(
C

R−→ Cat∞
t←− Z

)
Dually, there is a ‘left-internal-Yoneda embedding’

LC : C
op −→ Cat∞/C −→ Cat∞

x 7→ [x/C→ C] 7→ x/C

[x→ y] 7→ [[x/C← y/C]⇒ C] 7→ [x/C← y/C]

. . .

and a universal cobundle

Zop → Cat∞
op

where one can write Zop ≃ Cat∞
[1]-span ⟨[x/C→ C]⟩. Taking the pullback of Zop

along Lop
C is an explicit description of the more familiar (contravariant) Grothen-

dieck construction at C.
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Special case: smooth manifolds.∫
RC should be thought of as the ‘extended’ Stiefel bundle on C.

Indeed, shortening Ex(BO(n)) ≃ Π∞BO(n) to just BO(n), consider

BO(n)op
L−→ Cat∞

⇝∫
LBO(n)

��

BO(n)

As BO(n) has a single object, Rn, we have∫
LBO(n) ≃

∫ [
LBO(n)

] ∣∣
Rn ≃ Rn/BO(n) ≃ ∗

since under-∞-groupoids are contractible, and so in fact indeed we have∫
L ≃ EO(n).

The passage from subspaces to frames (Grassmann ⇝ Stiefel) can be explicitly seen to fall out
here by observing(

colim
N→∞

Grn(RN )

)
/Rn

≃ colim
N→∞

(
Grn(RN )

)
/Rn

≃ colim
N→∞

Vn(RN ).

Also, we can do the opposite-same with covariant Grothendieck: take R : BO(n) −→ Cat∞ ⇝∫ op R ≃ BO(n)/Rn ≃ ∗. Oppositeness is immaterial since BO(n) is an ∞-groupoid.

The stratified Stiefel bundle.

We need to fine-tune the ‘internal Grothendieck bundle’
∫
RV↪→ → V↪→, since it

gives ‘all-codimension frames’.

Let
ε ⊂ V↪→,

the anti-Grassmannian, be the (non-full) sub-∞-category whose objects are n,
n ≥ 0, and whose morphism spaces are given by

ε(n,m) =

{
∗, n = m

V↪→(n,m), n ̸= m.

When n < m, we have ε(n,m) ≃ Vn(m) ≃ O(m)/O(m− n).

We will call its ‘free Cartesian replacement’

EV↪→

V↪→

source
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where

EV↪→ (V↪→)[1]

ε V↪→

⌜
target

the stratified Stiefel bundle. It can be written as a certain restriction of the right-
internal Yoneda.

Upon restriction to a fixed dimension n, it recovers the ordinary Stiefel bundle:∫
R = EO(n) EV↪→

BO(n) V↪→

⌜

This is not the case when the naïve
∫
RV↪→ → V↪→ is used.

Some linear algebra.

Fix an inner product on n := Rn, and let V↠, the stratified op/co-Grassmannian,
be the version of V↪→ with surjections allowed instead of injections. Will need:

♭ : (V↪→)op ≃ V↠

V 7→ V ∨

[V ↪→W ] 7→ [W∨ ↠ V ∨]

. . .

♭ : (V↪→/n)op ≃ n∨/V↠

[V ↪→ n] 7→ [n∨ ↠ V ∨]

[V ↪→W ] /n 7→ n∨/ [W∨ ↠ V ∨]

. . .

♯ : (n/V↠)op ≃ (V↪→/n∨)

[n↠ V ] 7→ [V ∨ ↪→ n∨]

n/[V ↠W ] 7→ [W∨ ↪→ V ∨]/n∨

. . .

⊥ : V↪→/n ≃ (V↪→/n)op

[V ↪→ n] 7→ [V ⊥ ↪→ n]

[V ↪→W ]/n 7→ [W⊥ ↪→ V ⊥]/n

. . .

We will not distinguish a functor and its opposite in notation.
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Normal cobundles and Poincaré duals.

From above:
s∗opn

♭≃ Rn/V↠.

The coslice projection to V↠ becomes (s∗n → V↪→)op under ♭ and ♯.

Consider a solid n-framing T s∗n

M on M , whose lifting edge we will denote by

t = ts∗n

M : Ex(M)→ s∗n.

Let En(M) = Ex(M)op, the enter-path ∞-category.

Induced cobundle on M :

c(M) : En(M)
t−→ (V↪→/n)op

⊥≃ V↪→/n

and
P(M) := Im(c(M)) ⊆ s∗n.

The Ex of (the ‘stratified frame bundle’ of) this cobundle is as follows. Consider

Es∗n EV↪→

s∗n V↪→

⌜ and
C(M) Es∗n

En(M) s∗n

⌜

c

and note the canonical map

c ◦ π : C(M)→ P(M).

We are almost seeing two new stratified spaces.

The ∞-category C(M) comes with canonical tangential data:

• its horizontal tangent cobundle

Th : C(M) −→ En(M)
t−→ s∗opn → V↠,

• its vertical tangent bundle

T v : C(M) −→ En(M)
c−→ s∗n → V↪→,

• and its full tangent bundle:

T : C(M)→ En(M)→ s∗n
⊞−→ V,

where we employed

⊞ : s∗n
diag−−−→ s∗n × s∗n

id×⊥−−−→ s∗n × s∗opn → V↪→ × V↠ ⊕−→ V.

which by construction factors through T v × Th.

Crucially, it canonically satisfies

TC ≃ εn

and so in particular factors through V↪→.
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Morita- or structured realisations.

We want CM := |C(M)|T≃εn , a stratified space, to be defined by requiring

(1) Ex(CM ) ≃ C(M)

(2)
(
Ex(CM )

TC−−→ V↪→
)
≃

(
Ex(CM ) ≃ C(M)

T−→ V↪→
)

and analogously (special case of the above), for PM , we want

(1) Ex(PM ) ≃ P(M)

(2)
(
Ex(PM )

TP−−→ V↪→
)
≃

(
Ex(PM )

forget−−−→ V↪→
)

In general, a stratified space with given tangential data analogously to the above
need not exist.

Some simple cases:

(1) If M is closed and dimM = n, then ∗ ≃ P(M) = {[0 ↪→ n]}, so PM = ∗,
CM = M .

(2) If M is closed and
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