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Of quantities some are discrete, others
continuous... Discrete are number and
language; continuous are lines, surfaces,
bodies, and also, besides these, time and
place. For the parts of a number have no
common boundary at which they join
together... A line, on the other hand, is a
continuous quantity. For it is possible to
find a common boundary at which its
parts join together, a point. And for a
surface, a line; for the parts of a plane
join together at some common boundary.
Similarly in the case of a body one could
find a common boundarya line or a
surfaceat which the parts of the body
join together.
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Abstract

We introduce the notions of linked space, linked quasi-category and linked
manifold, which are certain spans of the ordinary versions of the respective ob-
jects, and which model stratified spaces of various kinds. We then transfer, in
depth 1, certain phenomena and constructions from stratified topology to this
setting, such as exit path quasi-categories and the beginnings of a stratified
bundle theory. We then discuss and extend the topology underlying a con-
struction of J. Lurie, which associates a functorial field theory to any framed
disk algebra, to arbitrary tangential structure, as well as an incorporation of
defects.






Original work and self-plagiarism

Most of Section 2.2 and Chapter 3 up to and ezcluding Section 3.3 have
appeared in my preprint [71]. Parts of Chapter 4, including its main result,
have appeared in my preprint [72], but are produced here with an improved
presentation and with some new content. Chapter 1 also includes some ma-
terial adapted from the introductory sections of these two preprints. The rest
of the text has not been published before. All unattributed results, excepting
some classical ones recalled in the preliminary Chapter 2, are original.
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Preface

KINDNESS, n.
A brief preface to ten volumes of
exaction.

The Devil’s Dictionary
Ambrose Bierce

The ideas that have made it into this dissertation formed over a number of
years I spent working on various problems that are related to one another — it
seems reasonable to think — to one extent or another. Its contents, therefore,
reflect a skimming and homogenisation that was perhaps unnatural, but ne-
cessary to present a coherent story. Moreover, it is a far cry from the original
research proposal I made back in 2020, and so I think of it as a prologue to
other projects to come. If, along the way, I have made some contribution that
is of more general interest than only to myself, then I will count the time spent
typing well-spent.

There are barely any advanced prerequisites to prevent an enjoyable reading
of the text. I have gathered some preliminary material, mostly on quasi-
categories, in Chapter 2, within the main text rather than in an appendix.
Its purpose is to recall, in otherwise uncharacteristically terse French style,
some well-known definitions and facts used throughout the text, and fix some
notation. I have endeavoured to keep it minimal but complete. There are
a number of external results cited and used in other chapters, which seemed
ill-suited for full recitation in Chapter 2 or elsewhere. In such cases, I have
provided precise coordinates. If there are no accompanying remarks, the cited
result should apply without modification. In the occasion a work is cited
without further coordinates, then none of its results are logically required for
the statement being made. For the many results I cite from J. Lurie’s Kerodon
I have opted to give tags, which should be stable over time, but result in an
unorthodox citation style, such as ‘[52, 014H].’

I write ‘abelian,” ‘cartesian,” ‘riemannian,’ etc., without capitalising, be-
cause these words are adjectives. The royal we is used — if the reader will
allow a Kantian [sic] mannerism — to refer to any entity capable of using the
pronoun [. Consequent changes in reading are understood: we see that means
I see that; we will see that means I have seen that; and so on. I have attemp-
ted, at times unsuccesfully, to write variables in italics and constants in roman
type. Finally, notation interrupts ordinary language according to the follow-
ing rule: it comes after the noun that refers to it, and not only after all of its

ix



X PREFACE

qualifications are listed. That is, I write ‘a functor f: C — D of oo-categories’
rather than ‘a functor of co-categories f: C — D. This is the way.

In the last few years, I have enjoyed the immense academic freedom granted
to me by my advisor, Alberto S. Cattaneo. I thank him for his trust and genial
company — mathematical and otherwise. My work and attitude have benefitted
from exchanges with many people, among whom I should like to mention
Iakovos Androulidakis, Kadri Ilker Berktav, Giovanni Canepa, Nicola Capacci,
Ivan Contreras, Lennart Doppenschmitt, Marius Furter, Aleksandar Ivanov,
Emil Jacobsen, Branko Juran, Artem Kalmykov, Thomas Lehéricy, Philippe
Mathieu, Louann Rieger, Pavel Safronov, and Cagr1 Sert. Thanks are due as
well to Joseph Ayoub, John Francis, and Thomas Willwacher for their generous
support. I thank the staff at the institute for their constant help, especially
Jessica Bolsinger, Bettina Kurth, Gunnar Lenz, and Carsten Rose; and the
staff at Kraftwerk for their impeccable operation and countless doppios. A
number of people’s influence has seeped through, directly or indirectly, into
my work: Dennis Borisov, Jorg Briidern, Thorsten Hertl, Philipp Kastendieck,
Mark Penney, Thomas Schick, Ulrich Stuhler, Peter Teichner; Anne, Carl,
Charlotte, Jakob, and Max; Francisco, Luis, Marco, and many more besides;
and Nick, Raoul, Yasmin and company — thank you all. Call me if you find a
mistake so I can remove your name from this paragraph.

My deepest thanks are due to my family for tolerating me over the years:
my late father Erol, my late grandfather Irfan, who used to talk physics with me
when I was just old enough to remember, my mother Sermin, my grandmother
Unver; Hans, Mattia, Rahel, Salvi, Samira — and my dearest Tabea: I look up
to you. You'll have to continue living with my mistakes.



CHAPTER 1
Introduction

1.1. Good spans of spaces

Many results in stratified topology tend to characterise stratified spaces or
stratified maps in terms of strata and their links. These links can be either geo-
metric, like the boundary of a ‘regular neighbourhood,” such as the boundary
of the blow-up along a singularity, or the sphere bundle of the normal bundle
of a submanifold; or they can be ‘homotopical’ in nature, defined to be path
spaces between pairs of strata, or higher-depth analogues of such.

The advantage that such results provide is that the strata and links of a
stratified space are smooth: they are non-stratified, ordinary spaces connected
by maps between them, and one can hope to transfer techniques of ordinary
topology to study such systems, and thus obtain results about the original
stratified space. For instance, in the context of homotopically stratified spaces
a la Quinn [63], Miller showed in [57, Theorem 6.3] that stratified homotopy
equivalences between such spaces are exactly those maps which induce weak
equivalences (in the ordinary sense) on strata and homotopy-links. This means
that the strata and the links determine the stratified homotopy type.

There are similar results in the more recent conically-smooth variety de-
veloped by Ayala, Francis, Rozenblyum and Tanaka [9, 6], which is a geo-
metric refinement of the conically-stratified spaces formalised by Lurie in [50,
Appendix A], which generalises the pseudo-manifolds of the early Whitney—
Thom ([80, 73]) days of the theory.! Lemma 3.3.5 of [6] identifies the space of
paths between strata in terms of links.

It is also of great interest to obtain similar results for stratified disk algeb-
ras, or more generally for factorisation algebras locally constant with respect
to some stratification, and indeed this has been achieved in some paradig-
matic cases in the conically-smooth context. The prototypical statement is
Deligne-Kontsevich’s Swiss-Cheese Conjecture (Theorem) ([49]), which, in
one formulation, states that a Swiss-Cheese algebra ([79]) in dimensions n,
n — 1 (i.e., on the n-dimensional half-plane) is equivalent to an E,-algebra
A (its restriction to the interior), an E,_;-algebra M (its ‘restriction’ to the
boundary), and a map A — HC(M) of E,-algebras (the action of A on M),

'Indeed, Whitney-stratified spaces are conically smooth: see [60]. See [62] for an in-depth
treatment of analytic and geometric aspects of stratified space theory, as well as a historical
account of the developments in the 20th century. In the present work, we will only focus on
stratified topology.

2See e.g. [23], but also [74] for a proof of the statement we give as well as a historical overview
of earlier proofs of the various incarnations of the theorem.

1



2 1. INTRODUCTION

with target the Hochschild cochain object, a model for the centre of M in
the sense of [50, §5].%> Similarly, Ayala—Francis-Tanaka considered algebras on
closed intervals and on euclidean space stratified by a distinguished hyperplane
in [8, §2.6 resp. §4.3], obtaining similar algebraic characterisations. In the lat-
ter case, the action of the n-dimensional bulk algebra A on the d-dimensional
hyperplane algebra M is characterised, if we disregard some details concerning
tangential structure, by a (d + 1)-algebra map [, ., A — HC(M), with the
link S"~471 (or rather S"~471 x R%)* making a crucial and telling appearance.

In Chapter 3, we propose a construction intended to turn such results
around and build stratified spaces directly from strata and links, that is, from
collections of smooth spaces that are related by no more than ordinary maps
between them. More specifically, we restrict ourselves mostly to depth 1 in
this work,® where, for every well-behaved span

L \
M N

of spaces, we construct an oo-category £X. Here, M and N model two strata,
the former lower than the latter, L their link, and £X the exit path co-category
a la Lurie-MacPherson-Treumann—-Woolf (|76, 82, 50]). The link maps 7 and
¢t are required to satisfy conditions that combine phenomena in the homo-
topically stratified as well as in the pseudo-manifold settings. Absent these
properties, the construction does not work: when ¢ is arbitrary, £X is not
even well-defined, and when 7 is arbitrary (but ¢ well-behaved), then the con-
struction yields a simplicial set EX which need not be an oco-category.

First, the homotopy-link L between two strata M and N in a homotopically
stratified set is defined to be the space L = Py, n of paths that start in M
and end in V. Consequently, there is the source evaluation m = evy: Py ny —
M, which, in a homotopically stratified set, is required (by Quinn’s original
definition) to be a fibration. Similarly, we require 7: L — M to be a fibration.

Second, say the link of a singular submanifold M within a pseudo-manifold
N (sothat N = N\.M) is given by the boundary of its blow-up along M, say by
the sphere bundle S = S(NM) of the normal bundle of the submanifold. Then,
we may consider the projection 7: L =S — M which is certainly a fibration,
but then there is also the map ¢: S < N which is a closed embedding, and in
particular a cofibration. Indeed, we require ¢: L — N to be a cofibration. We
call a span G as above with 7 a fibration and ¢ a cofibration a linked space.
In fact, ¢ can be simply a continuous injection. The examples that are central
to this work involve spans of infinite Grassmannians (Example 3.2.17), and
bordisms and defects (submanifolds) in Examples 3.2.15 and 3.2.16.

31t is therefore naturally an associative algebra in E,,_;-algebras and thus (by Dunn-Lurie
additivity [50, 29]) an E,,-algebra, so that we may speak of E,-maps A — HC(A).

“We have Jon—acr A= [gu_a—rygass A= [} g A by definition.

®We do discuss higher depth; most interestingly, the construction that we are about to
describe is iterable — see below.



1.1. GOOD SPANS OF SPACES 3

The construction of the co-category EX = EX(G) is based on the following
idea. Every point ¢ € L can identified with a 1-morphism of type M > 7({) —
t(¢) € N. Relaxing this slightly, we may consider any path v in N that starts
in (L), and take it as a 1-morphism of type (¢~'7y) — 1. The constant loop
inclusion L < P(L) < P(NN) recovers the idea of taking the points of L as
1-morphisms. The simplicial set £X has objects only the points of M and N,
and 1-morphism the paths in M and N and moreover, separately, all paths in
N that start in ¢(L). Such paths, the ‘exit paths,” are clearly non-invertible
since there are, by construction, no morphisms from N to M.

Constructing simplices of higher dimensions in such a way that £X becomes
an oo-category is most of all a ‘combinatorial’ challenge. We define the n-
simplices to be the n-simplices (of M and N together with those) in N such
that, most importantly, its restriction along A{%L-e=1} s A" for some n+1 >
e > 1 lies wholly within «(L). We call e the exit index of the simplex in
question. The idea is that, in depth 1, this index, together with the underlying
simplex in N, determines how and where the latter comes into contact with
M and N. For instance, if a 2-simplex is (witnesses) a composition of a path ~
in M and an exit path §, then it will be underlied by a 2-simplex I': A? —+ N
such that its 0l-edge I'|o; = do(I), i.e., its restriction along A{% < A2 is
in +(L), and such that 7(T'[o1(0)) = ~(0),° 7(T|o1(1)) = (1), and of course
5(0) = F|01(1)2

3
é

3
2

*
* *
I I
i i
I ~ I
* ——> %

Here, the bottom row is within M, and the triangle depicts the 2-simplex I' of
N which underlies the composition 2-simplex, which is depicted by the whole
picture. The 0l-edge of this 2-simplex is in fact vy by construction, and its
12-edge is the exit path §, which is 1-morphism with source 7(dy) = (1) € M.
This particular composition is a 2-simplex of exit inder 2 in our convention,
owing to the fact that the top-most vertex, which is number 2, is the first
one that has exited into the ‘higher stratum’ N. In order to compose an exit
(1-)path ~y from 7(7) to v(1) with a path § in N starting at (1), we introduce
exit 2-paths of index 1 into £X, which can be depicted as follows:

¥ —2 s x
.

|

|

|

I

*

SWe suppress ¢ 1.



4 1. INTRODUCTION

Here the exit index is 1 because already the vertex 1 has exited into N. There
are similar pictures in higher dimensions, where in dimension n there are n
different possibilities for the exit index, giving n different classes of n-simplices,
which interact with each other appropriately upon application of (the appro-
priately defined) face and degeneracy maps.

The combinatorial nature of the construction above lets us apply it in
greater generality than with input topological spaces only. In fact, we prove
the following:

THEOREM (3.2.11). Let M, L, N be oco-categories, w: L — M a right
fibration, and v: L — N a cofibration. Then EX (/\/l RN N) s an 0o-

category.

A consequence of this degree of generality is that the construction is it-
erable: given a linked space (or oo-category) &, we can build its exit path
oo-category, and use that as input for a span e.g. of type & = (EX(6) «
L' — N7) to construct EX(G'), and so on, which will model exit paths in higher
depth. This is the topic of Section 3.5; the rest of this work is independent of
such conjectural thoughts.

We call spans of co-categories of the type above linked oo-categories. Given
the ubiquity of right fibrations of co-categories in view of their equivalence to
space-valued presheaves (via (un)straightening — see [51, §3| or [17, §5] for
textbook accounts), the result suggests a practical approach to implement
ideas of stratified topology in many different contexts.

Before we explain why this is a good construction so that £X does indeed
behave like the exit path oco-category of a stratified space, let us mention that
philosophically similar ideas have already appeared in the literature. Douteau,
in [25], gives a Quillen equivalence between a certain model category of strat-
ified spaces and a model category of diagrams of simplicial sets indexed over
(non-degenerate sequences in) posets. Because the bulk of this dissertation
is concerned with stratified bundle theory in disguise, the construction of the
stratified simplicial set (which is then realised to a stratified topological space)
associated with a diagram of simplicial sets is too unwieldy for our purposes.
It does not yield oo-categories in general (see [26, Recollection 2.53 ff.]),” which
we certainly need, and is defined as a certain colimit (computing a certain left
Kan extension — see [26, Recollection 2.37]), which makes it rather impractical
for some of our necessarily hands-on constructions. This is not unexpected,
since the construction is completely unburdened by topological assumptions
on the link maps such as the ones we have. However, the work of Douteau et
al. contains a wealth of ideas that may be useful in pushing the idea of £X
further, especially to higher depth without relying on the iteratibility of the
construction. We leave such questions to future work.

Now, the following results show that £X behaves as one would wish it to.

It is however the case that the exit path oco-categories associated with conically-smoothly,
conically, and homotopically stratified spaces (sets) are all oo-categories ([50, 59, 6]).
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THEOREM (3.3.1). Let G = </\/l s N) be a linked oo-category, and
p €M and g € N points in the two strata. We then have an equivalence

Homex() (P, q) ~ Pr,.q

between the morphism space in EX from p to q and that of paths in N that
start in the embedded fibre o(L,), where L, = {p} X m L, and end in q.

This is a pointwise statement. We globalise it in Section 3.4 for linked
spaces and prove

THEOREM (3.4.1). Let G = (M T N) be a linked space. Then
L~ (M{N).

Here, (M | N) = M X0 gxAl X gyt1y IV is the oriented fibre product
of M;N — £X. We should note that their oco-categorical homotopy fibre
product (in the sense of [52, 032Z]) is empty, because, as we already noted, it
is clear from the construction that £X contains no isomorphisms from M to
N. The result above is not (and should not be) true for linked co-categories
in general; instead, we expect [6, Lemma 3.3.5] to hold mutatis mutandis.

Believing it to be too soon, and because it is unnecessary for our purposes
in this work, we will not be concerned with setting up a model category of
linked spaces (or of linked co-categories). Hoewever, we will propose a notion
of a map of linked spaces in Section 7.1 that recovers and extends ordinary
stratified maps, and, at least in depth 1, propose a linked realisation, which
is sometimes conically smooth, of a constructible linked manifold in Defini-
tion 7.1.14, by repurposing an idea from [6]. A better name might have been
‘stratified realisation,” but this might lead to confusion with ideas of, say [24,
25] or [6].

1.2. The tangential theory

For the purpose of constructing a theory of factorisation homology that can
take as input any (co,n)-category and evaluate it on appropriate variframed
stratified spaces, Ayala—Francis—Rozenblyum defined in [7] the ‘fibrewise con-
structible tangent bundle’ T of a (conically-smooth) stratified space, which
intrinsically depended on their earlier work, in part with Tanaka, on the gen-
eral theory of conically-smooth stratified spaces ([9, 6]). The functor T (or
rather its nonrelative special case to which we restrict our attention) on a
stratified space X is given in the form of a classifying map

T Exit(X) — V',
whose domain is their version of the exit path oo-category. It is equivalent
to the model of Lurie-MacPherson by a result of [6]. The target V™ is what
we will call the ‘stratified Grassmannian,” an oco-category that assembles the

fundamental co-groupoids of the ordinary infinite Grassmannians of all ranks,
and adds non-invertible paths between them that increase rank.
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By exodromy, such a functor classifies a constructible sheaf on X, which
may be interpreted as the sheaf of sections of the ‘tangent bundle’ — although,
to our knowledge, no étalé space of this sheaf has been discussed in the lit-
erature. Combining the bundle span featuring in Construction 6.1.5 with
the linked realisation of Definition 7.1.14 provides such a space in depth 1,
and Chapter 5 is mainly concerned with placing its quasi-categorical classifier
within the model of V™ we give in Chapter 4.

In keeping with the theme of the previous section, we present a construc-
tion of a quasi-categorical variant, V=, of V' that does not rely on stratified
space theory. Namely, Section 4.1 constructs a topological monoid whose op-
eration is given by direct-summing vector spaces. To this end, we circumvent
the more systematic treatment of spectra with E.-structure ([50]) or ultra-
commutativity ([68]) by adding some redundancy that achieves on-the-nose as-
sociativity. In order to develop a real K-theory (spectrum) for linked /stratified
spaces, one should pursue a different treatment, but our construction may be
informative with respect to its zeroeth space.

Even though the direct (Whitney) sum operation on vector bundles is com-
mutative up to canonical isomorphism, the corresponding operation on classi-
fying spaces is only homotopy-commutative. In fact, the maps

@: BO(m) x BO(n) — BO(n+ m)

induced by direct-summing rank-m and rank-n vector subspaces of R is also
not associative, but only so up to (contractible) homotopy. We give a straight-
forward strictification of (][,~, BO(k), ®), obtaining a topological monoid

(BOY, ®).
We note in passing that there is a very non-canonical homeomorphism
BOY = «11Z, x [ [ BO(k),
k>1
where the extra factors on the right are a result of the strictification.

Now, finally able to follow the idea of [7, Remark 2.7], we can take its
delooping, B®O, the topological category with a single object * and morphism
space BOS, take its homotopy-coherent nerve N'(BZ0), which is a quasi-
category, and finally ‘loop” again by passing to the under-co-category under
*:

V7 = % /NM(B®0).
As we will note, this order of operation is crucial in order to obtain the desired
object, in the sense that taking N (x/B®0) instead, the nerve of the topo-

logical under-category, ‘forgets’ the topology (see Remark 4.3.2). In V7, one
has the objects of BOfY, and a 1-morphism

V - K

from a rank-n vector space V to a rank-(n +m) vector space K is exactly the
choice of a rank-m vector space W and a path

WoV - K
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in BO(n+m).® This resembles the idea of EX we discussed above, and making
this resemblence precise will be a major topic of this dissertation. We prove
that V= adds no more non-invertible paths to BOfY:

THEOREM (4.3.11). V= ~ BO{Y.

Here, V= is the maximal sub-oo-groupoid of V77, a.k.a. its core. While the
statement seems obvious, it is not immediately obvious how to provide a map,
in either direction, that realises such an equivalence. We construct an explicit
map

U: BOY — V=
that we then prove is an equivalence by indirect means. We develop the tech-
nology required to provide an explicit inverse — assuming one does not wish to
effectively go through the construction constituting the proof of Whitehead’s
theorem — only later, in Chapter 5. The definition of ¥ is also a warm-up to
the less trivial depth-1 version of it, which we will discuss momentarily.

The proof applies mutatis mutandis to the delooping of any topological
monoid M whose only invertible point is its unit. That is, the proof shows in
this case that there is an equivalence

(x/N"(BM))~ ~ M

of co-groupoids. We interpret this to suggest */N"(—), with slightly mislead-
ing terminology, as a stratified loop space functor which creates non-invertible
paths in M that depend on the monoidal structure. It is thus an inverse to
B only at the level maximal sub-oco-groupoids. It remains desirable to un-
derstand how, and whether, the idea generalises to accomodate non-strictified
structures, and what an eventual stratified Recognition Principle, and a useful
definition of spectrum with quasi-categories appearing in this way, may then
look like.

In Section 6.1, we finally arrive at a definition of a quasi-categorical incarn-
ation of T (in the nonrelative case) that circumvents the theory of conically-
smooth stratified spaces. Given a linked manifold &, a certain collection of
classifiers organise into a span map (see Construction 6.1.5)

T&: & — BO(n,m)
from & to the linked Grassmannian

BO(m) x BO(n)

BO(n) BO(n+m)

with the appropriate ranks, which then embeds into V™ via the unpacking
map

U: EX(BO(n,m)) — V7.

8We are simplifying notation somewhat at the expense of ignoring certain subtleties concern-
ing some non-canonical choices, but, as we will see, these issues turn out to be immaterial
(due to the straightforward Lemma 6.1.1).
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This map is the sole subject of Chapter 5, with the main result being its
existence:

THEOREM (5.1.3). There is a fully-faithful functor U: EX(BO(n,m)) —
V= of oo-categories.

The fact that this map is fully faithful is much easier to see than the
fact that it exists. Indeed, Chapter 5 is devoted wholly to its construction,
and we note said property only later in the proof of Proposition 6.3.13. Due
to the point-set definition of £X, and the cumbersome definition of N, the
construction is rather lengthy, and utilises some convexity arguments for its
key idea. While the construction applies in the generality discussed above
with topological monoids, it is not at all clear how to extend it to a purely
combinatorial (simplicial) or algebraic context: it seems to depend crucially
on translating back and forth between topological spaces and Kan complexes
using the classical adjunction between geometric realisation and the singular
chains functor. In brief, it remains desirable to obtain a simpler construction
of U.

Such questions notwithstanding, the span map TS induces a map
TG: EX(6) —» VT
of oo-categories. We thus transport the tangential theory in the conically-
smooth context to the linked context.

Chapter 6 is then devoted to a study of a certain kind of tangential structure
in this setting. A given smooth (non-stratified) tangential structure

F:Y — BO(n)
of rank n can be seen as a stratified tangential structure
F:Y — BO(n) = V= C V™~

after including BO(n) into V. However, stratified spaces with Y-structure’
are exactly the smooth (trivially-stratified) spaces with Y-structure in the
ordinary sense. The simplest and most elegent generalisation of this idea that
produces non-trivial results is also due to AFR, who, in [7], consider solid Y -
structures on stratified spaces, which generalise the idea that if a manifold M
is of dimension n’ < n, then a solid Y-structure ought to be a Y-structure on a
rank-n extension of its tangent bundle TM. In the categorical literature, this

replacement of F': Y — V7 is known as a cartesian fibration replacement, and
we borrow that name for the following definition, which is due to AFR:

DEFINITION (6.3.8). The cartesian fibration replacement of F:' Y — V=
is the oo-functor

F:Y =Y, F)=V")M xpom Y = (V7)1
the source evaluation from the fibre product along the target evaluation.

It is a result of [35] that this does indeed give a cartesian fibration replace-
ment of F' over V7.

IWe mostly suppress F'.
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The main result of Chapter 6 is a characterisation of cartesian tangential
structures on linked manifolds in classical terms:

THEOREM (6.4.20). A linked manifold possesses a cartesian Y -structure if
and only if it possesses a solid Y -structure.

Here, a solid Y -structure means, by our definition unlike AFR’s, a solid
structure on the individual strata (in the ordinary sense described above),
together with a compatibility (map) over links: see Definition 6.4.18, which is
completed by Remark 6.7.14. It can be expressed as a lift to a particular span
of spaces over BO(n, m) — see Observation 6.4.19.

1.3. Field theory and very generalised homology

We will finally discuss Chapter 7, which has the modest aim of discussing
and extending the topology underlying a construction of Lurie from [53, §4.1].
It associates with any input framed disk algebra a functorial field theory, and
we allow arbitrary smooth tangential structures as well as defects. Allowing
defects turns out to lead away from the conically-smooth theory, and so the
full construction awaits the development of a theory of algebras and homology
native to the linked setting, not to mention the appropriate target Morita
category, all of which we leave to future work. Therefore, the only goal of
this chapter is to discuss the underlying topological construction. As will be
evident, our approach is heavily influenced by that of [67] and some results
from [9, 8].

At chain level, homology theories in a certain generalised sense can be char-
acterised as functors F, on spaces of a certain type, satisfying two properties:

e compatibility with collared cutting and gluing: if M = M_II;, «xr My,
then F(M) ~ F(M-) ®H]J-‘(MO><R) F(M,), and

e compatibility with exhaustion: if M = colim() C My C M; C --+),
then F(M) ~ colimnF (M;).

For spaces M locally modelled by ‘basic disks’ with a specified type of
stratification and possibly a specified tangential structure (organised in an
oo-category of ‘basics’ possibly with such structure), Ayala—Francis-Tanaka
(AFT) showed in [8] that functors F (valued in a nice symmetric-monoidal co-
category C) as above are necessarily given by factorisation homology, F(M) =
[y Ar, with coefficients in a basic-disks-algebra A = Az (in C). We will
refer to this fact as the Locality Theorem. This is about ‘homology theory’
in that, in essence, A gives rise to a locally-constant factorisation algebra on
M, which can be seen as a cosheaf on the Ran space of M, and factorisation
homology becomes (0’th) cosheaf homology (i.e., global sections).’® Moreover,
some well-known homology theories, such as singular homology and Goresky—
MacPherson intersection homology, can be recovered at least at chain level by
factorisation homology.

10T hese ideas go back to the chiral homology of Beilinson—Drinfeld [11]. Their topological
incarnation at the level of factorisation algebras rather than homology was developed by
Costello-Gwilliam in [21, 22] and by Lurie — at both levels — in [50].
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The Locality Theorem can be seen as a homological version of a special
case of the Cobordism Hypothesis.!* The Cobordism Hypothesis goes back to
the work of Baez—Dolan [10],'* and is sometimes rendered as the statement
that a topological quantum field theory, organised as a (higher) functor out
of an appropriate fully-extended bordism category into an appropriate higher
symmetric monoidal target category C, is determined by its value on a point.!?
The Locality Theorem is easier to prove than the Cobordism Hypothesis, and
so, by the law of the conservation of difficulty, if a translation of the kind
we mentioned exists, it should be hard to make precise. The meta-goal of a
program, of which we think this work ought to be a part, is to give an ex-
press duality between homology theory (in the sense above) and (extended)
functorial field theory, such that AFT’s theorem translates to the Cobordism
Hypothesis. We will now briefly sketch some reasons why this might be expec-
ted, and then go on to motivate and explain the contributions of the present
work. We will drop the adjectives ‘topological” and ‘quantum,” and will simply
speak of (extended) functorial field theories, or (e)FFTs.

In [53, §4.1], dissatisfied with the Cobordism Hypothesis due to its calcula-
tional impractibility, Lurie proposed a way to construct an eFFT that can be
described rather concretely: one would take as input an E,-algebra A ([56, 55,
50]), or, equivalently, an n-dimensional unstratified disk algebra with tangen-
tial structure given by framings (see [36] for a quick exposition), and as output
would produce a symmetric-monoidal (0o, n)-functor Z4 on the n-dimensional
fully extended bordism category with stable n-framings with values in ‘the’
Morita category of E,-algebras (see also [44, 43| for a history and discussion
of the scare quotes). The idea of this construction in terms of factorisation
algebras as worked out in Scheimbauer’s thesis [67] is explained briefly in [70];
another friendly introduction is [1].

It is, in essence, the iterated application of the following basic idea: let M
be a manifold with, for simplicity, a single boundary component 9 = M, and
say, again for simplicity, that the top dimension of the bordism category is n,
and M is n-dimensional. A stable n-framing on M induces a framing on M°,
and a framing on 0 x R, the framed collar of the boundary. Consequently,
i) 5 A, which is by definition /. oxr A, 1s naturally an E;-algebra due to the R-
factor (and the functoriality of [ A), whereas [ 10 A is merely an [Eq-algebra
in C, i.e., a pointed object therein, its pointing coming from the inclusion of
the empty subset (and again the functoriality of [ A). These two algebras
that M and A give rise to are related by an action, one of faA on [ Ao A
parametrised by embeddings of the collared boundary into the interior. In
other words, they couple to give a factorisation algebra on the half-line R

HThe idea of applying techniques of stratified space theory and factorisation homology to
functorial field theory is certainly not new: this was discussed already in [4, §1]; see also [5].
12Sce Freed [34] for a friendly introduction.

13This is in reference to an especially simple unstructured case of the statement. A better
(and still unstructured) reformulation is that such TQFTs correspond to the fully-dualisable
objects of C.
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that is locally-constant with respect to its boundary stratification. This can be
realised — and here we digress slightly from the standard account — by pushing
forward the factorisation algebra induced by A on M° to R>( by sending all
of ‘M’ to %, and by projecting 0 x R>y — Rs¢. More precisely, this is a
stratified map only upon refining M° with a new stratification induced by the
closed submanifold 0 & 0, C M?® given by 0 pushed inwards along a nowhere-
vanishing inward-pointing normal vector along 0 for some positive time, which
gives
M° g]\4]_-[6_*_ 0 X Rzo,
which in turn yields the refinement
M — M°

with domain consisting of the three strata M°, 0, and 9 x R~(. The ensuing
projection
p=pu: M— M = R
defines the field theory associated, in this approach, with the input algebra A,
by setting
Za(M) = (pur)«(A).

The notation obfuscates the dependence on tangential structures, but this is
understood. More specifically, the Pushforward Theorem of AFT [8, Theorem
2.25] applies to the constructible bundle py; and defines Z4(M) in the setting
above.

If there are two (groups of) boundary components — say ‘incoming’ and
‘outgoing’ —, we can proceed similarly and push the algebra forward to Ryoy,
to the real line stratified by a distinguished point. In higher codimensions,
the collars have higher-dimensional n-framed collars, so one obtains algebras
on euclidean spaces with flag-like stratifications: see [67]. On a point *, the
collar is merely R"™ = % x R", and the pushforward of A along the projection
* x R — R" gives A itself, so that Z, illustrates the Cobordism Hypothesis
by being determined by its value on .

Moreover, the Locality Theorem and the Cobordism Hypothesis combine
to imply that homology theories on framed n-manifolds correspond exactly
to eFFTs on the stably-framed bordism category with values in the Morita
category of E,-algebras. More interestingly, the functoriality of the rule M —
par (again suppressing the choice of tangential structure) along the 1-extended
bordism category translates to the compatibility with collared cutting and
gluing, which we invite the reader to check in low dimensions.

This approach is beset with a number of technical difficulties. The defin-
itions of the various extended bordism categories are much less easy to work
with than the classical global (1-extended) Atiyah(—Segal-Witten) formalism
([2, 3, 69, 81]), leading to various theorems and theorem sketches but rather few
examples. A worked-out definition finally appeared in Calaque—Scheimbauer
[15] after [67], and put to use in [14]; variants and extensions appeared in [40,

e algebra A is defined on M°, and the projection M° — Rx¢ is weakly constructible,
becoming constructible along the refinement M — M?° as discussed.
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41]. However, at least as far as FFTs associated with disk algebras are con-
cerned, these aspects seem to distract somewhat from the essential topological
operation described above.

Indeed, the way we have presented the construction is non-standard: we
are not working with bordisms defined by cut functions on a smooth manifold
(without boundary) of full dimension, and we rely on the theory of factorisation
homology on stratified spaces to give a one-line construction of Z,, at least
in codimension 1. From this point of view, it is clear that the construction is
valid for an input algebra A with any tangential structure, provided that M
is stably-structured in the same manner. What is essential is the projection
pu associated with it, and that the ‘collar’ M, a refinement of the interior!®
possess the tangential structure in question in the usual sense, so that the
Pushforward Theorem applies.

Indeed, we systematise the rule M + p,; in depth 1 in Definition 7.2.2,
and call it the P? construction. It summarises the ideas discussed above and
is quite straightforward in its linked formulation. It is preceded by a necessary
preliminary section on maps of linked spaces, Section 7.1. Upon linked realisa-
tion, the P? construction recovers the ordinary stratified version of the story.
Once this has been achieved, there are two further directions that remain to
be dealt with.

First, defects. Factorisation homology on stratified spaces with tangen-
tial structure is perfectly capable of evaluating defect submanifolds, not just
boundary components. Therefore, in an approach that uses this theory, the P?
construction, and the ensuing FFT construction A — Z4 = (M +— (py)+A)
should therefore have an extension that takes into account defect submanifolds
within M.'® We describe such an extension in Section 7.4, and see that the
projections can have targets such as

upon realisation — see Example 7.4.8. The stratified spaces thus obtained are
conically smooth (see Remark 7.4.9), and AFT’s Pushforward Theorem can
be applied to the weakly constructible bundles p, defining the TQFT.

We then also discuss cutting and gluing, which is ‘dual’ to functoriality,
and obtain the following

1550ssibly times some euclidean factor

16The idea of connecting factorisation algebras/homology, or stratified space theory, with
defect coupling is one that is very much in the air at the time of writing. There is some
progress in BV(-BFV)-type contexts: see [18] and the references therein.
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PROPOSITION (7.5.5). The P? construction is compatible with cutting and
gluing.

In the linked setting where we formulate it, this proposition has a com-
pletely straightforward proof. Our treatment of cutting-and-gluing is quite
on-the-nose and conforms to that in more physically-minded literature, such
as e.g. in [16], much closer to the Atiyah formalism.

Until Section 7.6, P? does not refer to any tangential structure, and so
works with any at the price of being insensitive to it. In order to formulate a
sensitive version, we define in Definition 7.6.1 a stable Y -structure on a linked
manifold based on our result on cartesian structures on linked manifolds. We
then note in Lemma 7.6.3 that the construction can be applied to bordisms
with defects equipped with a stable Y-structure: see Definition 7.6.4.

We conclude with Section 7.7, which contains a brief discussion the follow-
ing problem: It is not clear how to extend the P? construction to bordisms
with defects that only possess a cartesian structure. We discuss the reason
why, and a trivial and unsatisfactory remedy. A version of the construction
does apply to bordisms with cartesian structure if they do not have defects:
see Remark 7.7.2.

1.4. Conventions

We list some of our conventions below. More will be fixed in Chapter 2.

e The set N of natural numbers includes zero.

e We denote the real line by R.

e We denote by A the simplex category, and its objects by [n], n € N.
The standard n-simplex is the simplicial set A[n] = Homa (—, [n]),
and we employ the Yoneda Lemma without mention.

e ‘Coface’ and ‘codegeneracy’ maps we simply call ‘face’ and ‘degener-
acy’ maps.

e We say oco-category to mean a quasi-category, and co-groupoid to mean
a Kan complex.

e Cartesian products of simplicial sets are defined dimension-wise.

e Given two simplicial sets C, D, we write C® = Fun(D, C) for the simpli-
cial set whose set, (C”), of k-simplices is the set of maps D x A[k] — C
of simplicial sets, together with the obvious simplicial maps.

e A cofibration of simplicial sets is a monomorphism.

e For € C an object, we write C/x rather than C,, for the over-oo-
category over x, and similarly z/C for the under-co-category.

e A map of oo-categories is a map of the underlying simplicial sets, i.e.,
a natural transformation between the two set-valued presheaves on
A. Occasionally, we call such a map an co-functor.

e Given maps f: A — C and ¢g: B — C of oo-categories, we write
(f L 9) = (f | g)¢ or, if the maps are understood, (A | B) = (A | B)°
for the oo-categorical comma category construction (called oriented
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fibre product in [52]) defined to be the iterated fibre product
(f 1 9) = Axcw C2M x o0y B.

e An equivalence of oco-categories is an equivalence-of-oco-categories as
in [52].

e When a topological space X appears in place of an oo-category, we
mean the oco-groupoid Sing,(X) of its singular chains.

e By a Kan-enriched category we mean a locally Kan category, i.e., a
simplicially-enriched category whose morphism spaces are Kan com-
plexes.

e Smooth manifolds have no boundary.

e We denote the trivial real rank-k vector bundle over a given space by

ek,



CHAPTER 2
Preliminaries

2.1. Quasi-categories
Quasi-categories are to stratified spaces as Kan complexes are to spaces.

2.1.1. Kan complexes and spaces. To expand briefly,! let

A" = {(xo,...,xn) e R sz = 1}

be the standard topological n-simplex, the convex hull of the standard basis
of R"™. For X a topological space, let X,, == Homr,,(A", X) be the set of
continuous maps from A" to X, called the set of n-simplices of X. There are
natural maps between the sets in this collection induced by pulling back along
(pre-composing with) maps of type A" — A™ for varying n and m. Maps of
the latter kind can themselves be given in terms of which corner, i.e., basis
vector, in A" is mapped to which corner in A™, and so in terms of functions
of type {0,...,n} — {0,...,m}. Asking these latter maps to respect the
natural orientations of the standard topological simplices amounts to asking
that they be non-decreasing, which leads us to the simplicial set structure on
the collection (X,)n,en. That is, abstracting away from the space, we have
arrived at (most of) the following

DEFINITION. A simplicial set is a collection S = S, = (S,)nen of sets
together with a map ¢*: S,, — S, for every order-preserving map ¢: {0 <
o <n} = {0 < --- < m}, such that ¢*¢* = (¢ o ¢)* whenever ¥ and ¢

compose.

In other words, a simplicial set is a functor S: A° — Set, where A is the
simplez category, whose objects are the finite ordinals [n] = {0 < --- < n},
n € N, and whose morphisms are given by order-preserving maps. The target
Set is the category of sets and functions. One writes S, := S([n]). The maps ¢*
are called simplicial maps. A map of simplicial sets is a natural transformation.
The resulting category of simplicial sets is denoted by sSet = Fun(A°P, Set).

2.1.2. Geometric realisation. The collection (X)) induced by a topo-
logical space X as discussed above can be expressed as the simplicial set

Sing,(X): A® —— Top®P Homrop (—,X)

Set

I'We assume that the reader is familiar with ordinary category theory, including the Yoneda
Lemma, adjunctions, Kan extensions, and enrichment (see, e.g. [54, 64]), as well as with
basic homotopy theory.

15
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and is called the complex of singular chains of X. Here, | — | is called the
geometric realisation functor, defined by [n] — |[n]| = A™ and

(¢: [n] = [m]) — | (to,...,tn) — Zti"”’ Z ti ,
b(t:)=0 b(ti)=m
where empty sums are understood to be zero. Less trivially, and more com-
monly, | — | has a left Kan extension

| — |: sSet — Top
along the Yoneda embedding A(—): A — sSet. The latter is given by
[n] — (A[n] = A([n]): A°® — sSet, [n] — Homa(—, [n])).

This being an extension, we have |A[n]| = |[n]| = A™. It exists because Top is
cocomplete and so can be computed as follows:

|S| = COlimA[n]%SAn.

This is a non-sensical expression that abbreviates the colimit in Top of the
diagram
(A ] S)— Top

where (A | S) is the comma category taken within sSet of the functors A(—)
and {S} < sSet, that is, the category whose objects are maps Aln] — S
of simplicial sets and whose morphisms from Aln| — S to A[m| — S are
maps A[n] — A[m] such that the resulting triangle commutes. The functor
(A | S) — Top is the composition (A | S) — A — Top given by first
forgetting to domains and then applying the original | — |.

We have thus set up the functors Sing,(—): Top = sSet: | — |. In fact,
| — | is left adjoint to Sing,(—), as can be seen by applying the formula for
| —|. When S is the complex of singular chains of a topological space, then the
adjunction yields natural bijections Homgse(A[n], S) = S,. More generally,
this is implied for any simplicial set S by the Yoneda Lemma. Much more
can be said about this adjunction, but need not be. See [39] for a textbook
account.

2.1.3. Composition and contractibility. Let us observe now that a
simplicial set S is a relaxed kind of (small) category: the set Sy is called the
set of its wertices or objects, and the set Sy is called the set of its edges or
morphisms. The source and target maps are the pullbacks along the maps
[0] — [1] given by 0 +— 0 and 0 — 1, respectively. The identity morphism
id, € Sy at © € Sy is given by pulling = back along [1] — [0], 0,1 — 0.
However, the straightforward renamings end here since S carries no map that
emulates composition of morphisms. Instead, one says that a composition of
f:x —yand g: y — zis witnessed by a 2-simplex H € S5 whose pullback
along [1] St [2] and [1] Skt 2] is f and g, respectively. In this case, H is said
to witness its pullback along [1] — [2], 0 — 0, 1 — 2 as a composition of f
and g.
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The simplicial set S will emulate category-like composability of morphisms
if, given f and g as above, an H as above exists uniquely. However, for
the associativity of composition, and its ‘coherence,” we will have to consider
witnesses of higher and higher dimensions. If all such witnesses exist uniquely,
then S will uniquely determine, and be determined by, a category. But since
our aim is not just to re-express category theory, let us consider the question
as to how we can organise composition when H does exist but not uniquely.

Given f and g, there is a whole simplicial set of witnesses H. In order to
express it, note first that the simplicial set of composable morphisms in S can
be written as the pullback

Comp(S) —— Fun(A[1],5)

L7 e
Fun(A[1], ) 2+ Fun(A[0], S)

where every term is a simplicial set. Indeed, in contrast to Homgge(—, —),
which gives sets, one writes Fun(A, B) = Fune(A, B) for the simplicial set
whose set of n-simplices is Homgge (A X A[n], B), and whose simplicial maps
are induced by applying them on the A[—]-factor. The maps ev; and ev;
are induced by taking source and target, respectively. Now, observe that a
2-simplex of S provides, as discussed above, a pair of morphisms one of whose
target vertex is the source vertex of the other. Going through the Yoneda
Lemma, we obtain the function Hom(A[2],S) — Hom(A[1]) x Hom(A[1], S),
which trivially extends over the A[—]-factor to define a map Fun(A[2],S5) —
Comp(S). The simplicial set of compositions of f and g is then the fibre of
this map at (f,g) € Comp(S)o, that is, the pullback

Comp(f,g) —— Fun(A[2],S)
I |
{(f,9)} ——— Comp(S)
where {(f, g)} is the simplicial set given by a singleton at each degree, and the
map {(f,g9)} — Comp(S) sends the unique vertex to (f,g), and the unique
n-simplex to the pullback of (f, g) along the unique map [n] — [0].

Asking that f and g compose essentially uniquely, that is, that the choice
of witness be topologically irrelevant, can be made precise by asking that
Comp(f,g) be contractible. The notion can be borrowed directly from (its
weak version in) classical homotopy theory by expressing spheres in simplicial
terms: for each n € N, there is a simplicial subset 0A[n] C Aln], the boundary
of Aln], or the simplicial n-sphere. It is empty if n = 0, and if n > 1, then
it is the simplicial subset generated by the pullbacks d;(idp,)) of idp) € Aln],
along the maps 0;: [n — 1] < [n] that skip i € [n]:

<i-—
d(x) = {x, r<i1—1,

zr+1, x>1.
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These are called the face maps, pullbacks along which are denoted, as already
indicated, by d;.? The contractibility of a simplicial set X can thus be expressed
by the condition that all simplicial n-spheres in X have fillers, that is, every
lifting problem of type

OA[n] ——

Al

admits a solution.

If Comp(f, g) is contractible for every composable pair (f, g) of morphisms
in S, then S is called a quasi-category, and we will call it an co-category in the
rest of this work.? Contractibility entails non-emptyness, whence composing
is always possible.

This conceptual definition is equivalent, by a result of Joyal (proved in
[52, 0079]), to the following traditional definition. Let, first, A? C A[n] be the
simplicial subset generated by all the faces d;idp, of A[n] except for the i’th
one, called the i 'th horn of A[n].* Then S is an co-category if and only if every
lifting problem of type

A} —— S

J: T

Al

admits a solution whenever 0 < ¢ < n. For such natural numbers 7 and n, A}
is called an inner horn, and when ¢ = 0 or ¢ = n, it is called an outer horn.
This condition is called the weak Kan condition® and the analogous condition
for all 0 < 7 < n is called the Kan condition. Simplicial sets that satisfy the
latter are called Kan complexes, and we will also call them oco-groupoids.

Composable pairs of morphisms in S correspond to maps of type A? — S.
Let now f: x — y be a morphism in S, and consider moreover the identity id,.
These arrange into an outer horn A2 — S, and if it has a filler F': A[2] — S,
then F' witnesses id, as a composition of the morphisms f and dyF, i.e., the
latter as a left-inverse of f. Similarly, f and id, give an outer horn A} — S, a
filler F' of which witnesses dyF' as a right-inverse of f. Similar considerations

2An equivalent definition (that of [52, 000R]) of A[n] can be given by setting (dA[n])([m]) =
{a € Homa ([m], [n]) : « is not surjective} and using the obvious simplicial maps.

3There are several definitions of what, following Lurie, we call an ‘co-category,” and all
fall under the less opinionated umbrella term ‘(co, 1)-category,” all connected by chains of
Quillen equivalences with respect to certain model structures. The term ‘quasi-category’
is universally accepted to mean what we mean by it. The notion goes back to [13, 78],
and was developed alongside another model, that of simplicially enriched categories, which
we will discuss below. There are systematic treatments and comparisons of the competing
(complementary) definitions. See e.g. [75, 48, 12]. Several other foundational works on the
subject will be mentioned later.

ABquivalently ([52, 000U]), AZ([m]) = {a € Homa (i, [n]) : [n]  a(fm]) U {i}}.

SNow antiquated, oco-categories were originally called weak Kan complezes.
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in all dimensions justify the term ‘oco-groupoid’ for Kan complexes. If § =
Sing,(X) for a topological space X, then S is a Kan complex, since such
inversion of paths up to homotopies which are witnessed by higher paths is
possible within X.

2.1.4. Quasi-categories and stratified spaces. A stratified space, in
its purest form,® is a topological space X together with a continuous map
s: X — P, called its stratification, to a poset P, called its stratifying poset,
equipped with the Aleksandrov topology, in which downward-closed subsets
are declared closed. The subsets X, == s71p C X are called its strata,” and Xp
is called lower than X,, and the latter higher than the former, if p < ¢. The
length of the longest non-trivial sequence of arrows in P is called its depth.

The standard topological simplex A™ has a natural stratification over [n],
given by writing it as the n-fold closed cone on a singleton stratified over
the trivial poset. At every iteration of this closed-cone taking, a minimal
object is adjoined to the stratifying poset. We recall this in more detail in
Remark 3.1.10, and will concentrate in the present section on A! = [0,1]
alone. In this scheme, its stratification s: A — [1] is given by s(0) = 0 and
s(t) =1 for t > 0.

A map from sx: X — P to sy: Y — Qis a poset map sy: P — Q and
a continuous map f: X — Y covering sy. Consequently, a stratified path in
X — P, amap (v,s,) from Al — [1] to X — P, is an ordinary path v with
image within at most two strata, s,(0) and s,(1), such that

$v(0) = sx(7(0)) < sx(y(1)) = sx(v(t')) = s5(1)
whenever 0 < t,# < 1. Consequently, if s,(0) < s,(1) strictly in P, then
there is no inverse stratified path starting at (1) and ending at v(0). The
corresponding version of Sing, that takes stratifications into account and there-
fore contains non-invertible paths will still be a simplicial set, but not a Kan
complex, rather only an oco-category.

Example 2.1.1. The stratified ‘identity map’ of A — [1], the pair (ida1,idpy),
is valid but not invertible.

Example 2.1.2. Consider s: R — {0 < —, +} given by s(0) = 0, s(R<) =
{—} and s(R-¢) = {+}. This is an example of a depth-1 stratified space.
The preimages of downward-closed subsets are {0}, R<p, and Rs>o, which
are all closed, so we have a stratified space. Stratified paths can travel from
0 to Ry or R+, but there are no stratified paths between R_.g and R+.
In particular, being-in-the-same-stratified-path-connected-component is not a
transitive relation.

6We concentrate in this section on what are known as poset-stratified spaces. They are, at
least in this work, to the concept of stratified space as quasi-categories are to the concept
of (00, 1)-category.

"These need not be connected — we do not require strata to be connected in this work.
Sometimes in the literature, the connected components of the X,, are referred to as strata.
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Example 2.1.3. Consider s: R?* — [2] given by s(0) = 0, s(V \ {0}) = {1}
where V' is a line through the origin, and s(R3? \ V) = 3. The preimage of a
downward-closed subset is either V or R? and so is closed. This is an example
of a depth-2 stratified space.

If one considers a version of Sing,(X) by asking the simplices to respect
the stratification, then one obtains the simplicial set Exite(X), which is an
oo-category if X is well-behaved — see Section 1.1 for a brief review and the
references. To conclude this section, we will recall a more combinatorial char-
acterisation of the functoriality involved in the definition of a simplicial set,
which we will use throughout the text for practical purposes, and on which
our own definition of the exit path oco-category will be explicitly based.

Let S = S,: A°® — Set be a simplicial set. There is a special class of
morphisms in A, the functoriality of S along which is equivalent to its global
functoriality. They consist of the face maps (which we already mentioned
above) and the degeneracy maps. Collectively, we call them the simplicial
operators.

The face maps are of type

0; =0 [n—1] — [n]
for ¢ € [n], which is defined to be the unique monotone surjection onto [n]~{i}.
The degeneracy maps are of type
oi=0":[n+1] — [n]
for @ € [n], which is defined to be the unique monotone surjection onto all of
[n] such that (i) = o;(i + 1) = 1.
Along S, these maps introduce the maps
dii Sn — Sn—l
and
Sit Sp — Snat
respectively, which we also call the i ’th face map and the i ’th degeneracy map.

The datum of S is equivalent the collection (S,,d;,s;)n; such that the

simplicial identities are satisfied, which are listed in the proof of Lemma 3.2.3.

Moreover, a map of simplicial sets is equivalent to a collection degree-wise set
maps that commute with the face and degeneracy maps.

2.2. Basic constructions

Let Cata denote the category of simplicial categories, that is, the category
of categories enriched in sSet. We assume the reader is familiar with the nerve
N(C) = N,(C) € sSet of an ordinary category C.

2.2.1. The homotopy-coherent nerve. We will first recall the simpli-
cial nerve construction ([19], though see also [52, 00KT]), following [51, §1.1.5].
We will then recall its mirror image, the homotopy-coherent nerve, that will
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feature heavily in Chapter 4. Our constructions and results hold, mutatis
mutandis, equally well for either choice.®

Similarly to the Yoneda embedding A < sSet, [k] — Alk], which gives a
simplicial set for each k£ € N, there exists a functor

<A~ CatA.

Definition 2.2.1. We first define € on objects, then on morphisms.
(1) The simplicial category €[k] has the same objects as those of [k], and
the simplicial sets of morphisms in each €[k] are given by
Homeyy (4, 7) = N(F 5),
where P, ;, 0 <4,7 <k is empty if ¢ > j, and
P,={IC{i<a+1<---<j}Clk]:a,bel}
if 7 < j. In other words, P, ; is the poset consisting of the subposets
of [k] that start at ¢ and j, with partial order < given by subset
inclusions.
For each triple i < j < p in [k], there is a map
Pip x Pij = Pip
defined by taking unions. The ordinary nerve functor applied to these
maps yields maps
Home (4, p) x Home (7, j) — Homepy (4, p)
of simplicial sets, which is associative since so is taking unions.

(2) A map f: [l] — [k] in A induces a map €[l] — €[k] as follows: on
objects, it is given by [l] 5 i — f(i) € [k], and on the mapping posets
it is given by P, ; > I — f(I) € Pjq),f(;)» applying N to which defines
the map f = Cf: €[l] — C[k].

Definition 2.2.2. We call the P;; mapping posets, and their nerves mapping
spaces.

Definition 2.2.3. The simplicial nerve NA(D) = N&(D) of a simplicial cat-
egory D is the simplicial set whose set of k-simplices is defined by

N2 (D) := Homgea, (€[K], D).
This is contravariant in [k] via the covariance of €.

In other words, N2 is the restriction of the Yoneda embedding Cata —
pSh(Cata) along €: A — Cata. We also write Fun(—, —) to take the set of
functors between the arguments.

Definition 2.2.4. The homotopy-coherent nerve N'¢(D) = Nbi¢(D) of a sim-
plicial category D is the simplicial set whose set of k-simplices is defined by

NP(D), = Fun(Path[k], A),
where Path[k] := €[k]°P. We write > for the partial order thereon.

8However, see [46] for a cautionary tale.
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Recall that, for any category C, we have an isomorphism N,(C°P) =
(N,C)°P ([52, 003Q)]), where the RHS is the oo-categorical opposite. Thus,

HomPath[k}(Lj) = N(‘Pz(,);j)a
and we keep this superscript ‘op’ throughout. This redundancy is meant to
provide clarity. In [51], Lurie writes P for our P, while in [52] he writes P for

our P°?. As an admittedly sub-optimal middle ground, we exclusively work
with N (as in [52]), but we keep the superscript.

Functors of type Path[k] — A are called k-paths in A.

If D is Kan-enriched, then N2(D) is an oco-category by [51, Proposition
1.1.5.10]. The same holds for N"(D) by [52, 00LJ]. Both are variants of a
result of Cordier—Porter [20].

2.2.2. Joins and (co)slices. For f: K — C a functor from a simplicial
set to an oo-category, there is ([47], [52, 01GP]) a right fibration C/f — C and
a left fibration f/C — C, whose domains are respectively called the slice and
coslice of C at f. We will recall their definitions, but refer the reader to the
op. cit. for the named lifting properties.

In the following, our convention is that X_; = () for X, a simplicial set,
and a product is empty if one of its factors is ). The following is equivalent
to the more standard definition; see [52, 0234]. It is a simplicial version of
Milnor’s general topological construction from [58].

Definition 2.2.5. The join X xY = (X xY), of two simplicial sets X = X,,
Y =Y, is defined by

(XxY)e ={(m, [, f+) s w2 AlR] = A[l], o2 Alkllo = X, fr2 AlR]L = Y5,

where 7, f_, f, are maps of simplicial sets, and A[k]|; = {i} xapAlk], i =0,1,
is defined using 7. Given ¢: [l] — [k] in A, the corresponding ¢: All] — A[k]
defines a map (X xY), — (X %Y, by restrictions.

Remark 2.2.6. We have injections
to: X > XY, 11:Y — XY,
For the former, let f: A[k] — X be a k-simplex of X. Defining
m: Alk] = {0} — A[l]

and setting f_ = f, and necessarily f,: ) — Y, gives amap X — (X*Y ). In
the inclusion of Y into X %Y, 7 is defined by factoring through the projection
to 1 and setting f_ empty instead.

Remark 2.2.7. The join construction is functorial in both arguments. Given
¢: X = X' : Y =Y we write ¢px1) for the induced map X xY — X' %Y.

Definition 2.2.8. Let K be a simplicial set, C an oo-category, and f: K — C
a map. The slice C/f of C at f is the simplicial set defined by

(C/f)n = (Homyser) e (Aln] x K,C),
where the subscript K indicates that the set in question consists of maps

¢: Aln]x K — C
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whose precomposition
K< Anj«K 3¢
is f.
The face and degeneracy maps are given by precomposition and functori-
ality: a map ¢: Alm] — A[n] induces a map

Alm]* K 5 Aln]« K 5 C,

which is clearly in (C/f)m, ie., (¢ o (¢ xid))|x = f. The slice is again an
oo-category.

The projection C/f — C is given by precomposing ¢: Aln| * K — C with
Aln] < Aln] « K.

The coslice f/C is defined analogously, with A[n]* K replaced by K *A[n],
11 by 19 and vice versa, throughout. It is again an oco-category.

Notation 2.2.9. Let ¢,: A[0] — C be given by a vertex = € Cy. We write
C/x =C/t,, z/C:=1,/C.
They are respectively called the over- and under-oo-category at x.

Remark 2.2.10. There are canonical isomorphisms
Alk] *x All] ~ Alk +1+1],

such that the composition

Alk] < AR« A[l] S Alk+ 1+ 1]
is given by

k] = [k+1+1], i~ 1,

and such that the composition

All] S AR« A[l] S Alk+1+1]
is given by

| —=k+14+1,i—k+141.
Remark 2.2.11. We should explicate the degeneracies in an under-oo-category
x/C. Via Remark 2.2.10, a 0-simplex of z/C is a 1-simplex of C with source z.
Given a 1-simplex
v: Al0]x A[l] = C

of z/C its source and target g, 71, are given, according to Definition 2.2.8, by

vo: Al0] % AJ0] L5 AJo] « A[1] B ¢,

and similarly with id = 1 for 7;. The faces (and degeneracies) of simplices of
all dimensions can be understood analogously: see Lemma 4.3.4.






CHAPTER 3
Linked spaces and exit paths

Let M, £ and N be oco-groupoids. We wish to construct an oco-category
that interprets £ as the space of non-invertible paths from M to N, without
modifying the paths of M and N, and such that vertices remain exactly those
of MII N. To this end, we first need maps £ — M, N, which play the
respective roles of source and target. For the sake of clarity, we separated the
construction into two steps: first we will discuss the ‘space’ of non-invertible
paths, and then adjoin it in a certain way to M IIN.

3.1. Exit shuffles

Definition 3.1.1. Let ¢: £ — N be a map of simplicial sets. We call the
simplicial set P := P, := L X yri0p N2 the mapping cocylinder of «.

REMARK. Definition 3.1.1 is a variation on the under-oo-category construc-
tion, and reduces to it if £ = pt is the constant singleton, in that there is an
equivalence ¢(pt) /N =~ pt x 3 N2, Note that otherwise the coslice ¢/ N
does not model a space of paths starting in £: its simplices, as simplices of N,
are higher-dimensional than required to begin with. Rather, it is the space of
cocones under ¢.

Remark 3.1.2. Recall how the mapping cocylinder appears in classical topo-
logy: in the analogous construction with spaces L, N and ¢ a continuous map,
the natural map P, — N is a fibration replacement for ¢ in view of a homotopy
equivalence L ~ P,.

Remark 3.1.3. There are two induced maps 7, 7: P — M, N defined as the
compositions in the diagram

where the map N2 — A1} is given by precomposition with {1} x Alk] <
A[l] x Alk].

25
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Ideally, one would adjoin P, using 7: L — M, to M II N as the space
of non-invertible paths from M to N, by employing 7, 7 of Remark 3.1.3 as
source and target maps, respectively, but P does not lend itself to this directly.
Instead, we will extract data out of it that does. First, let us delineate the
problem in order to motivate the construction to follow.

Remark 3.1.4. A vertex of P is a path of N that starts at a point in ¢(£).
One may coherently view this as a path which starts in M, by projecting its
source down to M via oy, and which, analogously, ends in N via 7. For higher
morphisms, however, a direct generalisation requires unnatural choices: for
instance, a 1-morphism in P may be depicted as

(3.1.5)

e — O
\
\
\\
l \\Jl
e — o

where the bottom edge is in ¢(£), and the top edge is in N. (We depict
the A[l]-coordinate in a k-morphism of N2 ie., in a map A[1] x A[k] —
N of simplicial sets, as the upwards vertical coordinate.) Two of the (non-
degenerate) 2-simplices of N we may extract are

/ T (3.1.6)

e —— o
T/ (3.1.7)

corresponding to the two (1, 1)-shuffles
A[2] = Al] x A[1]

A la Eilenberg-Mac Lane-Zilber [31, 30] (see also [52, 00RF]).! If we were
to add (3.1.5) as a 2-morphism to M II N, say with source edge the bottom
one, then we would have to choose the hypotenuse of the triangle (3.1.6) as
the target edge, and the vertical edge as the intermediate 12-edge. But we
may equally well make the analogous choice with triangle (3.1.7), declaring
the left vertical edge the source. The problem is that both types of triangles
are required for composition: if we wish later to concatenate, say, a path in
M with a (non-invertible) 1-morphism in P, then we need (assuming there is
a lift to £) a triangle of the first type. Similarly, if we wish to concatenate a
non-invertible I-morphism with a path in N, we need a triangle of the second

type.

~—

and

!Triangle (3.1.6) is given by the 2-simplex of A[1] x A[1] defined by ([2] — [1],[2] — [1]) =
((0,1 = 0;2 — 1),(0 = 0;1,2 — 1)) in A. Triangle (3.1.7) is given by (0 — 0 1,2 —
1), (0,1~ 0;2 + 1)). The hypotenuse in both triangles is the edge ([ 150, = [1}) €

(A[1] > AfL]),.
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Construction 3.1.8 (exit shuffles). Any pair 1 < j < k of natural numbers
determines a (1,k — 1)-shuffle S = S;: A[k] — A[1] x A[k — 1] by setting

00 L e N L
S 01 j—1 3-1 453 3+1 -+ k-1
Jlooo -~ 0 0 1 -

012 - k-2 k-1 k—1 a

in path notation, where the subscript j indicates the column number, with
column count starting at 0.
This is the non-degenerate element of (A[1] x A[k — 1]), induced in A by
the poset map
k] = [1] x [k = 1]

(17 1= 1)7 ? Z J-
We call S; an exit shuffle, and j its exit index.® It has multiple left inverses,

but we will use a particular one, CJ’? = C;, defined to be postcomposition with
the poset map

given by

[1] x [k — 1] — [K]
given by

.]_17 ZZ] Z—|—17 ZZ]

(0,3) = {Z.’ e {7’ 1
This choice for C is justified by results below such as Lemmas 3.1.13 and 3.1.14.

Definition 3.1.9. Let ¢: £ — N be a map of simplicial sets. For k > 1, we
define

PkA_l C N X {1,...,/{}
to be the subset consisting of pairs (7, j) such that in the diagram

Alk] 3 ! < N
Sj\ ///’//}::'yocj'
A1] x Alk — 1]

the arrow I lifts to the mapping cocylinder, i.e., it is in the image of the natural
map P — N2, We call a pair (v, ) € P2 an exit path of index j.

One can think of I' = v o C; as a scaffolding around v that gives it shape
and direction. We will differentiate its three parts — its base, its ladders, and
its top — as they relate to v in Definition 3.1.11.

2Exit shuffles are exactly the non-degerate simplices of A[1] x A[k] of maximal dimension,
k+1.
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Remark 3.1.10 (exit indices at depth 1). In terms of ordinary stratified geo-
metry, Construction 3.1.8 corresponds to the following phenomenon: a strat-
ified k-simplex or k-chain AF — X of X is a map of stratified spaces, where

Ak = 6k(pt) is the k-fold closed cone on the point. The closed cone C(Y) of a
stratified space Y — P = Py, where P is the stratifying poset (equipped with
the Alexandrov topology so that downward-closed subsets are closed) has

pt JT 0,1 xY

{0}xY
as its underlying space, and

P@(Y) = Pﬂiv
i.e., Py with a minimal element adjoined, as its stratifying poset, together
with the obvious stratification C(Y) — Pst. Now, the stratified map AF — X
comes with a commutative topological square

AT x

L

PAk S—j> PX

Clearly we have Par ~ [k] as posets. If
PX = {a = b}7

then the poset map sy is determined by a unique minimal ‘exit index’ j € [k].
Namely, let 7 = 0 if sy is constant, or else let j be the smallest number such
that

sp(j—1=<j)=a=<b,
referring to sy applied to an arrow. This is well-defined since [k] is connected.
As we do not refer to stratified paths explicitly, however, the different levels
(indices) at which a path may exit (from the stratum X,) give for us different
sorts of non-invertible paths. Note also that we do not consider exit shuffles
of index 0, as the corresponding k-chains are competely contained within the
smooth manifold X,, and similarly we do not consider ‘j = k + 1’, i.e., paths
contained within X,. (Besides, these indices do not determine shuffles in the
ordinary sense.) This analogy suggests a natural, albeit notationally heavy,
generalisation, using multiple exit indices, of the depth-1 Construction 3.1.8
to higher depth, but we will not pursue this here.

The aim of Definition 3.1.9 is three-fold.

e It helps group elements of P2 into three classes (Definition 3.1.11),
which will play different roles.

e [t ‘fixes orientation’, in the sense that the faces of v that touch £
are directed away from £ due to the orientation of the accompanying
I’ € P,. This precludes ‘paths from N to M’, a.k.a. enter paths. The
orientation depends on the exit index, so:

e Unequal pairs (7v,7) # (7,4') € P2 that share their first coordinate
play different roles, and this is indispensable.
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Definition 3.1.11. Let k > 1, (v,j) € P2, and let d; = 9} be a face map.
Then d;(7y) is either

e or low if it factors as follows:

o > N
\ e 4@

A[k—l] _>A

{0} x Alk
e vertical if it does not factor as follows:
Ak —1] ——% 5 A[K]

({0} I {1}) x A[k — 1] —— A[l] x A[k —1]
e or upper if it factors as follows:

Al —1] —2 5 A[#]

{1} x Ak — 1] —— A[1] x A[k — 1]

In the exit path oo-category of Definition 3.2.2 below, vertical paths will
remain non-invertible, low faces will become simplices in M, and upper faces
in M. Writing ‘d;(v) is vertical’, etc., is slightly abusive, since whether a face
is vertical, low or upper depends on (and in fact only on) the exit index. This
should not cause any confusion because we do not use these adjectives in any
other context. We have adopted ‘low” and ‘upper’ from [32], where they were
used in a similar context.

Definition 3.1.12. Let £ > 1. For J; and S; as in Definition 3.1.11, and for
o; a degeneracy, we write
bi; = bji € [k —1] (vesp. £, = £, € [k])

for the smallest number whose image under

S;0;: [k — 1] — [1] x [k — 1] (resp. under S;o;: [k + 1] — [1] x [k — 1])
has first coordinate 1. We leave b’,jyk undefined.

For instance, for k =5, j = 2, ¢ > 2, we have b = 2, but for i < 2 (with
k, 7 unchanged), we have b = 1; in general b € {j,j — 1}, depending on the
relative positions of i and j in {0,...,k}. We will note explicit formulas for b
and f in the proof of Lemma 3.2.3: see (3.2.6) and (3.2.10). Their derivation
is left as an exercise.
Lemma 3.1.13.

o Let k> 2 and assume (j,i) # (k, k). The composition

Al x Alk — 2] =% Ak —1] —2 AJK] 2 AL] x Alk — 1]
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where b = b?}i, preserves the first coordinate.
e The composition

All] x A[E] =S Ak +1] —Z AR —2 A[1] x Ak — 1,
where § = ﬂ?u preserves the first coordinate.
ProoOF. This is a direct check. Il

Lemma 3.1.14. Let k > 2. If (v,j) € P&, and di(v) is vertical, then
dl(VaJ) = ( i bk ) € PkA—T

To illustrate, for & = 3,
s | N
| A T (3.1.15)

is a vertical face of exit index b = 2 = j—1, where (v, 3) itself, the ‘lower right’
tetrahedron, is omitted. Similarly,

/7 \
(3.1.16)

is a vertical face of index b = 1 = j, where (7, 1) is the upper left tetrahedron.?

Proor or LEMMA 3.1.14. It suffices to consider the diagram

Alk — 1] <2 Al#] Y N

\
4
C; N
1

Al x Alk —2]

which commutes by construction. Lemma 3.1.13 implies in particular that the
restriction of d’ = S;0,C to {0} x Alk — 2] factors through {0} x A[k — 1], which
implies that IV = I'd’ lifts to Py_», as desired. Note that the case j =i = k is
precluded by verticality. O

3In these pictures, the boundary triangles of the prisms are oriented clockwise.
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Remark 3.1.18. Lemma 3.1.14 does not promote to an if-and-only-if state-
ment. Low faces also descend to Pg ,, but in a different way. Upper faces may
or may not. These facts will play no role below.

We close this section by noting the completely analogous fact for degen-
eracies.

Lemma 3.1.19. Let k > 1. If (v,7) € PR, then s;(7, ) = (si’y, ﬁ?l) € Pp.

3.2. Exit paths

Remark 3.2.1. If t: £ < N is a cofibration, then an exit path (v, j) € P&,
determines a canonical (k — 1)-simplex A[k —1] — £ of L, namely (recall
Definition 3.1.9) the restriction of I' = v o C; along {0} x Alk — 1] — A[1] x
Alk — 1] factors then uniquely through L.

We are now ready to give one of the main constructions of this dissertation.
Definition 3.2.2. Let a span
&= (M&ELHN)
of simplicial sets be given, where ¢ is a cofibration. We define a new simplicial
set, EX = EX(G), as follows:

® gXo = Mo H./\/O

e EXp = M TIPS TN, for k> 1.

e Face and degeneracy maps restricted to Mj, and N}, are those of M
and V.

e For k=1and v = (v,1) € P§ C Ny, we set?

di(7,1) = m(d1y) € Mo,
do(y,1) = 7(doy) € No.

e For k> 2, (v,7) € P2, and d; a face map:
— if d;y is vertical,” then we set d;(v,7) = (di,b;; € PE,) .
— if d;y is low, then we set d;(v,7) = w(diy) € My_1.
— if d;y is upper, then we set d;(7,7) = 7(diy) € Ni_1.
e For k > 1, (v,j) € PR, and s; a degeneracy: s;(v,7) == (siv,;:) €
PR

Lemma 3.2.3. £X(S) is a simplicial set.

Proor. We will verify the simplicial identities. Below, we assume k > 2
or k > 3 depending on applicability, and that (v,e) € P& ,. For completeness,
we have included a proof for the case k = 1 at the end, though it is better
considered an exercise.

4(noting S =id, C = id if k = 1 (Construction 3.1.8), and using Remarks 3.1.3 and 3.2.1)

(

(Definition 3.1.11)
6(Lemma 3.1.14)

(

ot

"(Lemma 3.1.19)
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d;d; = dj_1d; for i < j: We start by showing that

bfk 1 — bfk 1.7 . (3.2.4)

It helps to distinguish the cases

(He<i<j, (2)i<e<j,and (3)i<j<e. (3.2.5)
We have (by a direct check)
> e
k=30 )= 3.2.6
&I {e -1, j<e ( )

and thus if (1), then L = bk_l. = bkfl =eand R = bf{_lj_ bk 11 =e. If
(2) then L = b7t =e—1 and R=bW1 =c—1 YFinally, if (3), then

e—1,5—
=biy, = ¢—2and R = bE— 1j-1 = e —2. We should note that in the case
(2), e is at least 1, and in (3) it is at least 2, so that the expressions make
sense.

This finishes the verification if all involved faces of (7, e) are vertical. Oth-
erwise, Lemma 3.1.13 and Diagram (3.1.17) imply the statement; in any of
the cases where the case excluded in Lemma 3.1.13 is involved, the face in
question is low. We will give this argument here once and will not repeat it in
the verification of the other simplicial identities below.

Consider the diagram

Ak =2 e S Ak—1] — 2 AK] i
s s C 5
Al1] x Alk — 3] > A[l] x Alk — 2] - x Al —

(3.2.7)
Without loss of generality, say d;(d;(v)) = (0;0;)*y is low, so we need to show
that so is d;_1d;(y). That S,0; factors through {0} x Ak — 2] is equivalent
to 8.0;C,S,0; factoring thusly by Lemma 3.1.13. Now, S.0,C,S,0; = S.0,0; by
the construction of C,, and similarly S.0,;0; = S.0;0,C»S,. Together with the
same calculation for d; and 0; replaced respectively by d;_; and 9; in Diagram
(3.2.7), we see that

SeﬁijSb&- = SeajaiCb/Sb/ and SeaiCbSbaj_l = Segiaj_lcb/Sb/. (328)

The indices b() in the two equations are a priori not the same (as they are
calculated for different pairs of indices themselves), but we just showed above
in Equation (3.2.4) that the primed flats on the right hand sides do coincide.
Combined with the same simplicial identity for A/, this means that the right
hand sides in (3.2.8) agree, which implies the statement.

d;s; = sj_1d; for ¢ < j: Similarly, we first show

bk lA_ﬁez

k
e,

R, (3.2.9)

J— 1
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using the cases (1)—(3) from (3.2.5). Note that

k €, ]Z €

which, together with (3.2.6), implies that if (1), then L = bf;l =eand R =

’;}11 =e. If (2), thenL—bk_1 =e—1 andR—jje 1j—1 = e — 1. Finally,
if (3), then L = bfﬂlz —cand R = e 1j-1 = €. Now, Lemma 3.1.13 and
Diagrams (3.1.17) and (3.2.7) (mutatis mutandis; e.g., using (3.2.9) instead of
(3.2.4) for (3.2.8)) again finish the verification, analogously to the above. We
no longer mention this below.

d;s; =1id for i = j or i = j + 1: We show

k-1 _
_bﬂ’gj'_e'
Ife<j,thenL—|7k_1—e Ifi=jandj <e, thenL—bfﬂll—e. Ifi=7+1
and e > 1, thenL—b’;rllZ—e This covers all cases.
d;sj = sjd;—y for © > j + 1: We show
_ k-1 k-1 _
L=by e =R 5=
If e < j, thenL—bk’1 = e = f;l =R Ifj+1< e <i—1, then
L=pt, =e=1tl" 1]_R Ife=i—1 thenL="0l ], =e+1=8"1=R If
e =1, then L = bl;iz =e= 5—11,3' = R. Finally, if e > 7, both sides are again

equal to e.
5i8; = 8;415; for @ < j: Finally, we show

ﬁnﬁj a ﬁu’:lm
Similarly to the first identity above, it helps to distinguish the cases
(MHe<i<yj,(2)i<e<j,and (3)i<j<e.
12(1), then L = #i7' = ¢ = ﬁem = R. If( ) then L = 07! =e+1 =
-1

er1 i1 = R I (3), thenL—ﬂeHz—e—{—Q 6“]“ =R.

The case k = 1: Here, we necessarily have e = 1. The first simplicial identity
(in the order presented above) is not applicable for dimension reasons. For the

second, the only applicable case is i = 0, j = 1. Then we have dysi(7y,1) =
do(s17,81.1) = do(s17,1). This face is upper, so

doSl(’}/7 1) = doSl’}/ = Sodo’}/.
On the other hand, dy(v, 1) is also upper, so
sodo(7,1) = sodoy

as well. For the third identity, the only applicable cases are i = 0,1,2. If i = 0,
then doso(7, 1) = do(so7, t1.0) = do(so7,2). This face is vertical, so

doSo(’% 1) = (d0807b2,0> - (dOSO/% 1) = (77 1)7
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as desired. If ¢ = 1, similarly dyso(7y,1) = (d1So7,b21) = (7, 1) by verticality.
If i = 2, again das1(7, 1) = (d2517,94,,,2) = (7, 1) by verticality. For the fourth
identity, the only applicaple case is ¢ = 2, j = 0. Then, on one hand, we have
daso(7y,1) = da(soy,2) = w(dasoy) since the da-face is here low, and on the
other hand, we have that d;(v, 1) is also low, so

sodi(7,1) = som(d1y) = m(sod1y) = 7(d2s07),

as desired. The fifth and last identity accepts the general treatment we gave
above, since at each step the simplex remains vertical by construction. O

Theorem 3.2.11. If M, L, N are co-categories, 7: L — M is a right fibra-
tion, and v: L — N is a cofibration, then EX (./\/l Vilyy L>/\/') s an oo-
category.

Proor. We directly check the weak Kan property, first giving a verbose
proof for inner 2- and 3-horns before the general case, which is analogous. The
main idea is that given a horn with non-invertible faces, we can lift those in
M to N along 7 and take a filler therein, which, coupled with an appropriate
exit index, lifts the original horn. We will sometimes not distinguish £ from
its image ¢(£) in notation.
2-horns. Let h: A? — £X be given. The only two non-trivial cases occur when
at least one of the edges

hly:{i<j}=A[] = A2 ex
that constitute the horn lies in Pg*. (See Footnote 8 concerning the notation.)
(1) First, say
hlor = (ho1, 1) € Py
Then we have h|;3 € N as by construction the endpoint do(h|e1) =
7(doho1), which must be the initial point of hl;s, lies in Ny. Now the
horn
ho1 U h|123 A% - N
has a filler H: A[2] — N. But then (H, 1) € P{ fills h: the composi-
tion S;00p: [1] = [2] = [1] x [1]is 0 = 1 +— (1,0), 1 — 2 — (1,1)
which means dyH is upper, so that
dQ(H, 1) = doH = h|12 S Nl.
Similarly, S; o 92(0) = &1(0) = (0,0), S 00(1) = Si1(1) = (1,0) so
that ds H is vertical, yielding
dQ(H, 1) = (dgH,bLg) = (h01, 1) € POA
using (3.2.6). This shows that (H, 1) is a filler for h.
(2) Let us assume, more interestingly, that
hliy = (h1a,1) € PE.

Necessarily, hlo; € My, as the initial point d;(h|i2) = 7(dyhi2), which
must coincide with the endpoint of hlg;, is by construction in M.
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The induced lifting problem

{1} =af =" £

[ o]

A[l] e M

admits by assumption a solution Hy;. We thus have an induced horn
L(H()l) U hlgi A% — N

with a filler H € Ny. But now (H,2) € PA fills h: we have that doH
is vertical as Sy 0 Jy: [1] — [1] x [1] sends 0 — (0,1); 1+ (1,1), so

do(H, 2) - (doH, bg,o) - (hlg, 1) S POA
Similarly, So 0 09: 0 — (0,0); 1+ (0,1) means doH is low and so
dQ(H, 2) == 7T<d2H) - 7T(H01) - h’01 € Ml.
This shows that (H,2) is a filler for h.

3-horns. Let first

h: A3 — EX
be given, which misses the 023-face. The non-trivial cases to check occur when
h is not wholly contained within M or N. Suppose

(1) that the 013-face
Rlos: A2l ={0 <1 <3} = A} = EX

is in M5.% Then if any other non-degenerate sub-2-simplex of A is also
low,? so must all others, which would yield a non-case as h would lie
entirely within M. But since no other sub-2-simplex of h can be upper
while hlg3 is low, we may assume that all other non-degenerate sub-2-
simplices of h are vertical. Now, k|23 = (h,€') € P£ must be vertical
with the 03-edge, common with the assumed low face h|p3, itself
necessarily low. But then the vertex hly € Ay must be upper, which
is absurd since there is no exit index ¢ € {1,2} such that the exit
shuffle S/ : [2] — [1] x [1] sends 0, 3 to {0} x [1] while simultaneously
sending 2 to {1} x [1]: 2 < 3 in [2] implies S¢/(2) < Se/(3) in [1] x [1].
We conclude that h|gp;3 cannot be in My if h is not already wholly
within M. So, this is a non-case.
(2) that the 123-face

8We will continue using slightly abusive notation like A[2] = {0 < 1 < 3} which is similar
to A[2] = A{0 < 1 < 3} or A10<1<3} gince it is suggestive, commonplace, and should cause
no confusion.

9We call a sub-simplex (A[f] < AF — EX) € X1, 1 <L < k of a horn low if it is in My,
vertical if in P2 |, and upper if in Ny. Similarly when ¢ = 0 with low/upper.
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is in Mjy. All other 2-faces being vertical similarly implies that the
vertex hlg is upper, which gives a contradiction in the same way. We
conclude that this is also a non-case.

that the 012-face

hloiz: A2l = {0 <1 <2} = A} = EX

is in M. We may similarly assume all other 2-faces are vertical, and
so in particular h|3 upper, which here does not give a contradiction
as 3 € Ail)) C A[3] is final. We obtain that h’013 = (h013,2),h‘123 =
(h123,2) € P2 both have exit index 2, as they have a single low edge
each (the 01- and 12-edges, respectively). Now, we have an induced
horn in £ given by h|o; U h|12: A? — £, which constitutes the lifting
problem

ho1Uh
A% 01UNn12 L

T
\[ _H012 lﬂ'

A2 —— M

hlo12

which admits a solution Hyio. This yields an induced horn
H012 U h013 U h1231 Ailj) — N
which admits a filler H. Now, (H,3) € P35 fills h: the face d3H is low
since
S3005: [2] — [3] — [1] x [2]
sends i — (0,4), which implies
ds(H,3) = m(dsH) = m(Ho12) = hoi2,

as desired. The remaining faces d; H, © # 3, are vertical since S3 o 0;
sends 0 — (0,0) while 3 — (1,2). By construction we have

do(H,3) = (doH,bs) = (h12s,2) = hl123

and similarly dl(H, 3) = h‘lgg, dQ(H, 3) = h’013, using bgyi = 2, as
desired.

that h has an upper 2-face. Similarly to the above, we may argue
that it cannot have a low 2-face, and if it had any other upper 2-face,
it would be contained entirely within A/ where the lifting problem
is trivial, and so we may assume that the remaining 2-faces are all
vertical. Again similarly to the above, we have that the only non-
non-case is when the 123-face

hligz: A2l = {1 <2< 3} = A} = EX
is upper as the other cases contradict the partial order on [1] x [2];
in particular, the vertex hly is low. Moreover, any vertical 2-face of h
must have exit index 1 for otherwise it would have a low edge, which

is impossible as there is only a single low vertex. Now, h is in this
case given by a horn

h012 U h013 U h123 = EZ A? — N
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with Ao in ¢(£). Taking a filler H of b in N, we see that (H, 1) fills h:
the faces dy/o/3H are vertical since S;: [3] = [1] X [2] sends 0 — (0,0);
1 <iw (1,i—1), which means

d(H,1) = (d;H, b)) = (d:H, 1),

for i« > 1, as desired. On the other hand, S; o Jy has image inside
{1} x [2], so dyH is top. We obtain

do(H,1) = 7(doH) = hly23 € Na,

as desired.

(5) finally that all 2-faces of h are vertical. Let us rule out a few pos-
sibilities by yet more pigeon-holing arguments: the presence of three
(out of the four in total) low resp. upper vertices implies that there is
a low resp. upper face, which means we must have two low and two
upper vertices each. Now, hly and h|; must be low, and h|, and hl3
upper. For if h|g were upper and hl; (i > 1) low, the edge h|o; would
be a path N/ — M, which is excluded by construction, and similarly
if h|; were upper, taking ¢ > 2. Therefore, the 2-faces

h|0127 h|0137

namely those that contain both h|y and h|;, have exit index 2, while
those which contain only one low vertex have index 1. Of latter type
there is only one:

hl123.
Although h|ge3 is missing, it would have had to have index 1 by the
same argument. Therefore, adopting the notation from Case (4), we
may take a lift H: A[3] — A of h: A3 — N such that the restriction
to {0} x A[2] of the composition HoCq: A[1] x A[2] — N still factors
through £, independently of the choice of H. Indeed, (H,2) € P&
fills A: since b272/3 = 2 and b270/1 = 1, we have dz/g(H, 2) = h|013/012,
do(H,2) = h|i23. Note also that the exit index being 2 excludes low
or upper faces in this dimension.

Let now
h: Al — EX
be given, which misses the 013-face. The non-trivial cases occur when

(1) h has a low face. As in the case of a Ist 3-horn, we may exclude
all cases except the one where the low face is hlpi2 € My and all
other 2-faces are again necessarily vertical, with sole upper vertex
hls. Now, the faces h|ia3, hloos € P2 necessarily have exit index 2,
hlijk = (hijk,2), and their source edges hia, hoe € L4 lift two edges of
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the low face — that is, we have an intermediate lifting problem of type

A% h12Uho2 r

Y
\[ _H012 lfr

A2 —— M

hlo12

with solution Hyjo. (This is the first case where we see that it is not
enough for 7 to merely be an inner fibration.) This yields a horn
Hoi2 U hogs U hiag: A3 — N,
which admits a filler H € N. We observe that the restriction to
{0} x A[2] of HoC5: A[1] x A[2] — N, which is precisely Hyia, factors
through £ by construction. Indeed, (H, 3) fills h: Sz003: [2] — [1] X [2]
sends i — (0,17), so dsH = Hyjo is low:
d3(H,3) = m(Hoi2) = hloi2 € Mo,
as desired. In contrast, S5 o 0; for any i < 3 clearly hits both (0, —)
and (1, —) and so dy,1/2H are vertical. Using bs; = 2 for i < 3, we see
di(H,3) = (ho...?...Bv 2) = h‘o...?...?n
as desired.

(2) h has an upper face. Analogously, we can assume that the upper face
is h|123 € N whence we have that the sole low vertex is hly and that
all other faces are vertical with exit index necessarily 1. Exactly like
in Case (4) above, we have a horn

hi A3 EX

with 71\0 in +(£), and with filler, say, H € N3. We observe that (H,1)
again fills h. The check is exactly as in said Case.
(3) all faces of h are vertical. Analogously to Case (5) above,
h|0127

necessarily has exit index 2, and

h|123a h|023

have exit index 1. The missing face h|p3 would have had to have
index 2 by the same argument. We may thus choose a filler H € N3
of h: A3 — N and analogously observe that (H,2) € P2 fills h.

Horns of arbitrary dimension. Let
h: A} — EX

be given, with 0 < ¢ < n. We will adopt the notation and results from the
cases of inner 2- and 3-horns treated above. Suppose

(1) h has a low face, which is necessarily h|o_n,—1 € M,_1; w.lo.g., hl, €
Ny is the sole upper vertex, and all other faces are vertical. Let us
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write h|s for
h|, =ho0;: Aln—1] = EX

when that makes sense (j # 7). We have that each vertical face
hlz €PY,CEX, 1, i#k<n

has the (n — 2)-face h|;, in common with the low h|;, which therefore
gives a lift

hEﬁ €L,
to L thereof, where we wrote
hlz = (g e)

and (hg)s = t(hg,). As each hl; itself has a low face, its exit index is
necessarily maximal, i.e.,

e=n-—1.
Now, we obtain the intermediate lifting problem

Ui;&ke[n—l] h|Eﬁ

A — L
| T lw (3.2.12)
Aln—1] — . M

hln
with solution Hz. (It is imperative here that 7 be a right fibration
and not just an inner one, since ¢ = n — 1 is allowed.) This yields the
horn
UHR) U ) ) AF = N
i#k€n—1]
which has a filler H € N,,.
In fact, (H,n) fills h: the restriction of

HoC,: All] x Aln—1] = N
to {0} x A[2] is «(Hz), which factors through £ by construction. Fur-
ther,

S,00,: [n—1] = 1] x [n—1]
sends n > j — (0, 7), so d,,H is low, whence

dn(H, TL) = W(Hﬁ) = h|ﬁ,

as desired. Further, when k < n, we have S,, o 9; hitting both {0} x
[n — 1] and {1} x [n — 1], so each dyH is vertical. Using b, =n —1
for k < n, we have

dy(H,n) = (hg,n — 1) = h|;,
also as desired.
h has an upper face, which is necessarily hlg € N,_1; w.lo.g., hlg €

M is the sole low vertex, and all other faces hl; = (hg, 1) € P4, are
vertical with exit index necessarily minimal.
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Now, h is given by a horn h: A? — N with hlo € u(Ly). Taking a
filler H of h, we see that (H, 1) fills h: the restriction of C;: [1] X [n —
1] — [n] to {0} x [n — 1] hits only 0, so H o C; factors through the
mapping cocylinder P by construction, independently of the choice of
filler H. Further, S;: [n] — [1] X [n — 1] sends only 0 to {0} x [n — 1]
while & o 9y factors through {1} x [n — 1]. This means doH is upper,
SO

dO(H7 1) = h‘ﬁ?
as desired, and finally
dp(H,1) = (dpH,b1 ) = (hg, 1) = hl;
for every k > 1, also as desired.
all faces of h are vertical. Then h|y € My is low and h|,, € Nj upper,
and moreover there must exist an index 1 < e < n such that

h|; € My for j < e and hl; € N for j > e

(we had e = 2 for 3-horns of both varieties discussed above) for oth-
erwise there would exist a pair 0 < j < j' < n such that h|; € Nj
while h|;; € M, which is absurd since the edge h|;; would be of type
N — M. Moreover, e = 1 resp. e = n are impossible, since then hl;
resp. h|z would be low resp. upper. We have obtained

l<e<n.

(There is no 2-horn both of whose faces are vertical, so we may assume
n > 3.) Now, we claim that the exit indices of the faces h|; € P2,
j # i, are determined by this e:

- | >
= (hs, ), J=6 (3.2.13)
(hze—1), j<e.

Indeed, that

C ({0} x [n—2]) ={0,...,0—1}
for any 1 < ¢ < n — 1 implies that if j > e, then h; o Cg_l factors
through P, as does hl; o CI! if j < e. Conversely, suppose hls has

-----

S, that € > e, and since there are no further low vertices, we have
e <e. ~

Now, as h induces (or is rather underlied by) a horn h: A? — N/,
we may choose a filler H € N3 and claim that (H,e) in turn is a filler
for h. In order to ensure that H o C.: A[l] x A[n — 1] — N factors
through P, it suffices to observe that the missing face hl; cannot be
low, for then the choice of filler H does not affect the factorisation
property (in that h needs filling only away from «(£)). Indeed, the
only such case would be when ¢ = n, but A is inner.
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Finally, we check the exit indices of the faces of H: since 1 < e < n,
no face of H is low or upper, and (3.2.6) implies d;(H, e) = h|> due to
(3.2.13), as desired. d

Definition 3.2.14. We call a span M < £ = N of co-groupoids resp. oo-
categories, with 7 a Kan resp. right fibration, and ¢ a cofibration, a [linked
oo-groupoid or linked space resp. linked oo-category, of depth 1. We call EX
its exit path oco-category.

We will obtain compatibility with [6, Lemma 3.3.5] in Section 3.3.'° Since
the definition of the exit path oo-category in [6] coincides, by [6, Lemma 3.3.9]
with the Lurie-MacPherson model of [50, App. A] up to equivalence, this will
lift to a statement about the Lurie-MacPherson model as well. Let us first
briefly discuss how some classical examples fit into this setting. They will be
of central importance.

Example 3.2.15 (Bordisms). Since we only explicitly treated depth 1, we
restrict ourselves to manifolds with boundary, but the higher-depth treatment
of corners is analogous. The linked space corresponding to a (smooth) manifold
with boundary (M, 9M) has lower stratum dM, higher stratum M° = M\OM,
link L = OM, m = idgps, and ¢: OM — M° given by the flow along a nowhere-
vanishing inward-pointing vector field along the boundary for a chosen nonzero
time. An equivalent way to pick ¢ is to consider a tubular neighbourhood of
the boundary diffeomorphic (via such a vector field) to OM x [0,1) — M,
whose restriction OM x (0,1) < M?° to positive time hits the interior, and
take ¢ to be the restriction to M x {1}.

Example 3.2.16 (Defects). With a smooth submanifold ¥ C M of positive
codimension we may associate a nontrivial linked space with lower stratum X
and higher stratum M \ X. The link is given by SN(X), the sphere bundle of
the normal bundle of ¥, with the obvious maps 7 and ¢. For instance, the link
of R C R3 is the open (infinite) cylinder S' x R, whereas the link of ST C R3
is a torus.

Example 3.2.17 (Depth-1 stratified Grassmannians). For n, k € N, consider
the span

BO(n) x BO(k)
&W/ ~'\®
BO(n) BO(n+ k)
where 7 is the coordinate projection and & is induced by direct-summing
of vector spaces and the choice of a pairing function (bijection) N x N =
N. This gives sub-oo-categories of the quasi-category model of the stratified

Grassmannian of [7] given in Chapter 4.'* A higher-depth treatment ought to
reconstruct the full co-category, but we leave this to future work.

101t is clear from the construction that EX™~ ~ M IIN is the maximal sub-oo-groupoid.
e slightly deviated from the map @ used in Chapter 4 by using a pairing function, but
only up to an equivalence induced by it.
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Any Kan/right fibration 7 alone, or any cofibration ¢ alone gives an example
with a trivial choice for the other leg: the identity cofibration or the final
fibration to the point:

MELSL
or
«— LS5 N.
Any oo-category X gives a linked oco-category
00—

with EX() < 0 — X) ~ X. The other trivial construction
x4 X = X
corresponds to taking the open cone of X — literally in the ordinary stratified
setting for X = Exit(X), recalling that Exit(C'(X)) ~ Exit(X)? — in that
FEEX (s X D X) = &°

is initial. We prove this in Corollary 3.3.3.

3.3. Linked morphism spaces

NOTATION. Given an embedding ¢: ¥ — N and a point ¢ € N, we let
P(N)s, = Ps, denote the space of paths in N that start in «(3) and end
in the point ¢, equipped with the compact-open topology. We use analogous
notation when we work with a cofibration ¢ of simplicial sets.

The following result formalises and confirms the intuition that the link rep-
resents an infinitesimal expansion of the lower stratum into the higher stratum.
More precisely, it is a pointwise version of that sentiment. The proof is con-
tained, in essence, in the proof of Theorem 3.2.11, but we will extract it to
make an indepedent reading possible.

Theorem 3.3.1. Let G = </\/l VRN N) be a linked oco-category, and p €
M and g € N points in the two strata. We then have an equivalence

HomSX(G) (p7 Q) = Pﬁp,q

between the morphism space in EX from p to q and that of paths in N that
start in the embedded fibre o(L,), where L, = {p} X L, and end in q.

Proor. We will work with a model for morphism spaces that makes the
proof particularly simple: by [52, 01L5], the morphism space in EX" is equi-
valent to the right-pinched morphism space Homgy(p, q) = {p} xex (EX/q).
We will observe directly that {p} xex (£X/q) is in fact isomorphic to P, , =
L, xn (N/q). Indeed, at vertex level, the bijection

({p} xex (EX/q))y = (Lp X (N/9))q

is clear: recalling that non-invertible 1-paths in EX are elements of P C
Ni (as the exit index is necessarily 1 in this degree), let (v,1) € P&. For
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p=d¥(y,1) & 7(dV(y)) to hold, we must have d(y) € 1(£,). Similarly,

dE¥ (v, 1) L () (7)), which yields the bijection.

Let now k& > 0 and consider an exit (k + 1)-path (y: A[k] x A[0] — N, j)
in (EX/q)r C EXyy1. Asking that (v, 7) be in {p} xex (EX/q) is equivalent
to asking that

(1) its N-face
Alk] = A[k] x A[0] 5 N,
which is d}Y; , () under the standard identification A[k]xA[0] ~ Alk+
1], is bottom, as by construction only then can the corresponding £ X-
face be in M, C EXy;
(2) and that it lies in particular in ¢(L,).

Condition (1) implies moreover that d)(y) € N is vertical for all £ < k + 1,
since all other faces include the tip A[0] < A[k]*A[0] given by ¢, whence they
are necessarily not bottom; and if some dy(y) was top, that would contradict
the bottomness of its (unique) common (k — 1)-face with 4, (7). In fact,
(v,7) has no n-face that is top once n > 0: given Aln| — A[k + 1], there is
necessarily a vertex in &), (v) that is hit by it.

But then the exit index j must be maximal: 7 = k+1. For if not, then there
would exist at least one top n-face for n > 0, the largest such, withn = k+1—7,
for instance, being specified by [n] < [k + 1], o — ¢ + a. We thus obtain a
bijection ({p} xex (EX/q)), = (L, xn (N/q)), in a fashion similar to the
bijection of vertices: we have reduced exit paths (v, j) in question on the LHS
to those of index k + 1, and so to only a subset of N1, and specifically those
such that d{c\il(v) € L,. These are exactly the elements of the RHS. Finally,
it is a direct check that ({p} xex (EX/q)), = (L, xn (N/q)), is functorial;
for instance, any vertical face of such a (v, k + 1) is again of maximal index:

using the formulas in the proof of Lemma 3.2.3, we have bﬁﬁl = k and, and
as for degeneracies, hiﬁl =k+2 foralli <k+1. O

Corollary 3.3.2. Let G = (./\/l YR - N) be a linked space with M and N
connected, and p € M, g € N'. Then, 7 is an equivalence if and only if

Homex(s)(p, q) ~ QN.
Here, QN denotes the based loop space of N.

PRrROOF. The fibre at any point of the source evaluation P, , — L), is equi-
valent to QN. Thus, the homotopy long exact sequence of this fibration implies
that the fibre inclusion induces isomorphisms m,(QN) = m,(Homgxe)(p, q))
iff 7,(L,) = *. Thus, Homgx @) (p,q) ~ QN iff 7 is a trivial Kan fibration.

But, by [52, 00X2], 7 is a trivial Kan fibration iff it is an equivalence. O

We interpret this as saying that the spaces of non-invertible paths in a
linked space is are at their largest when 7 is an equivalence: there are just as
many as there are paths in the higher stratum. This is the case, for instance,
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when & is induced by a manifold with boundary, as in Example 3.2.15. We
have a maximal simplification in the other extreme, namely when 7 is trivial.

Corollary 3.3.3. For a linked space of type
= NS N
we have
Homgy (*, q) ~ *.
Consequently, when N = Sing,(N) for N a smooth manifold, we have
Exit(C(N)) ~ EX,

where the left-hand side is the exit path oo-category of the conically-smooth
open cone
C(N) = * Moy ([0,1) x N)

on N with its canonical stratification over {0 < 1}.

PROOF. We have £, = N, = N and so P, ~ N/q ~ x since N is an
oo-groupoid ([52, 018Y]). This implies EX ~ Sing,(N)“. The latter agrees
with the LHS by [6, Proposition 3.3.8].2 O

Since the link of the cone locus * and the interior of C'(N) is N itself, one
could consider x <~ N — N x R to be the natural linked space model for
the open cone. Mutatis mutandis, the proof of Corollary 3.3.3 implies that
this modification changes the exit path oco-category only up to equivalence.
It remains desirable, then, to reach a more systematic understanding of the
linked incarnation of R!-invariance in the conically-smooth theory.

3.4. The space of paths between strata

In this section, let & = (M LS N ) be a linked space. We will gener-

alise Theorem 3.3.1 in this setting and identify L, up to equivalence, with the
space of paths in £X that start in M and end in N.

Let p € M and ¢ € N. We have (L, | ¢)V = P, , ~ Hom(p,q) = (p |
q)*. Formally, varying p should give an equivalence

(L) =Prg= (L1q)™ =~ (M|q*™
and then varying g should give
L~ (L] NYN =P, ~(M]N)*.
Theorem 3.4.1. L ~ (M | N).

Our first lemma shows that Remark 3.1.2 holds with co-groupoids just as
it does with topological spaces. We include a proof for completeness.

Lemma 3.4.2. Let P, be the mapping cocyclinder as in Definition 3.1.1. If L
and N are co-groupoids, then P, ~ L.

2More precisely, this is an equivalence of quasi-categories for Lurie’s model from [50], or,
after translating to the complete Segal space model and using [6, Lemma 3.3.9], with that
of Ayala et al.
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PROOF. Since N is an co-groupoid, we observe that the source map N4MN —
N1 is a Kan fibration between Kan complexes. Moreover, each fibre NpA S
p/N, p € Ny, is contractible by virtue of being an under-co-groupoid ([52,
018Y]). This verifies condition (4) of [52, 00X2], which implies that N2 —
N{% is an equivalence, or equivalently (by the same cited result), a trivial Kan
fibration. Kan fibrations are stable under pullback [52, 00T5], so the natural
map s: P, — L is a Kan fibration. Finally, as trivial Kan fibrations pull back
to trivial Kan fibrations, s is one such. As it is in particular a Kan fibration,

[52, 00X2] implies that s is an equivalence. O

As its proof shows, the preceding lemma is a generalisation of the fact that
under-oo-groupoids are contractible, which is the special case when L is a point.
Since under-co-categories can be far from contractible, there is no reason to
expect that Theorem 3.4.1 holds for linked oo-categories. Indeed, most linked
oo-categories where for instance N contains a non-invertible morphism from
(L) to N provide counterexamples, e.g., ({0} < {0} — A[2]). However, the
following weaker result holds for any linked oco-category.

Lemma 3.4.3. (L|{ N)~ (M | N).

ProoF. We will in fact give an isomorphism. Observe (M | N), = {a €
EX,:dia € M, dya € N} =P8 sothat a € (M | N),iff o = (I',1) with " €
(Pr)o = (L} N)y. Thus, we have the map (M | N), = (L | N),, (I'1) — T
This gives a bijection (M | N), = (L | N),. A similar construction works in
any dimension.

Indeed, let a: A[l] x Aln] — EX be an element of (M | N),, i.e., evoa €
M,, evio € N,. Then its restriction along any exit shuffle S;: Ajn + 1] —
A[1] x A[n] where j € {1,...,n+ 1} is vertical, since shuffles hit both ends of
the cylinder. Thus,

als, = (a;,j) € Py with ajlo,_j1 € (L)j-1.

,,,,,

We will observe that the collection {a;} C N;;; assembles to give a map
A: All] x Aln] = N
which descends to (L | N),. Indeed, setting

Als, = a

defines A on every non-degenerate (n + 1)-simplex of A[1] x A[n] consistently
since « itself is well-defined. More precisely, let ©: A[f] < A[n + 1] be some
common simplicial subset of S; and S in A[1] x A[n]. We must show that
O*Als, = @*A]Sj/, but o already satisfies this, i.e., ©*als, = @*a!sj,, so that

in particular ©*a; = ©*ay in Npyi_(j—j. This yields A € N = (N | N),.

77777

we have evgA € (L), giving A € (L | N),,. We have thus constructed a map
®: (ML N)— (LLN),
a— O(a) = A.
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As for the inverse, let 8: A[l] x A[n] — N be an element of (L | N),, i.e.,
evof € (L), and let j < j’ be exit indices as above. Set

Bls, = (Bls,»J) € Py
This is well-defined, since

so that (8]s;, ) is indeed an exit path of index j. We have ©*Bls; = ©"B|s,
since ©"f|s; = 0"0s,. Thus, {Bls;} assembles to give a map B: A[l] x
Al[n] — EX. Moreover, B descends to (M | N),, since the initial vertex of
every (8|s,,j) — or of any exit path, for that matter — is low, so that all vertices
of evoB are low. We have thus constructed a map

U: (L N)—= (M]N),
B U(B) = B.

We may check directly that ® and ¥ are mutual inverses. Indeed, in any
dimension, we have ¥®(a)ls, = (®(a)ls,,j) = (aj,7) = als;, so V& = id.
Conversely, @V (8)|s;, = ¥(8); = Bs,, so P¥ = id. 0

PROOF OF THEOREM 3.4.1. We have P, = L x y(oy N2l 2 (L | N). The
statement follows by composing Lemma 3.4.2 and Lemma 3.4.3. U

3.5. A point and a line in space

In this slightly less formal section we wish to see how well Theorem 3.4.1
fares in the context of an iterated application of EX. It is not needed in the
rest of this work and can thus be skipped.

We will consider the example of R3, stratified, in the ordinary sense, as
{0} € R C R? where the middle term is a line through the origin. The strata
of this space are {0}, R* := R ~\ {0}, and R® \ R. The stratifying map
R? — P is the obvious one to the poset P = {0 < 1 < 3}.

Taking R, to consist of {0} and R*, i.e., R stratified as {0} C R, we
have that the link between {0} and R* consists of two points. If we were to
disregard the stratification on R, the link between it and R? would be S x R.
To verify these links, see Example 3.2.16.

We may now construct EX(R.). However, the ‘link projection’ S'xR — R
does not descend to an co-functor S x R — EX(M’) since the target is not
an oo-groupoid, but there is an induced stratification!® on S* x R through the
underlying map S'xR — R given by composing with the latter’s stratification:

S'xR—-R—=Plr={0=<1}.

Let us denote the resulting linked space (using Example 3.2.16 again) by Lg, .
Now, S' x R — R does descend to an oco-functor

EX(Lr.) — EX(R.).

Brealising a weakly-constructible bundle
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which is a right fibration by virtue of being a Kan fibration. Moreover, the
embedding S' x R — R3\ R naturally descends to an co-functor EX(LR,) <
R3 \ R, which is trivially a cofibration, so that we can set up the linked oo-
category

EX(Lr.)
/ S

EX(R,) R3\ R

and denote it by, say, 3.
inclusions as

oy- This is the result of ‘parenthesising’ the chain
({0} cR) C R?
and applying £X accordingly.

Alternatively, we may parenthesise as

{0} c (R C R?).

That is, ignore the stratification on R, to begin with and construct £X(R%,)
first, where R, is (using Example 3.2.16 again) the linked space

R« S'xR<—R>*R.

Now, the link of {0} C R? is S?. We see that this gives rise to the opposite
problem to the one in the paragraph above: the projection S? — {0} is fine, but
the embedding S? < R? does not descend to an oo-functor S? < EX(RY).
Still, the same solution is available: we may compose with the stratifying map
defining R to obtain an induced stratification

S? s R* — P ={1 <3},

where P’ stratifies R? in the obvious way by mapping the chosen line to 1 and
its complement to 3. The preimage of 1 in S? consists of the two intersection
points, say p and g. Thus, S? is broken into two strata, {p, ¢} and S* \ {p, ¢}.
Let us denote the resulting linked space (using Example 3.2.16 yet again) by

Sg,q = ({p,q} « S; 11 S; — S\ {p.q}).
The two circles sit within coordinate neighbourhoods around the two points.
There is a span map
S2. — R

whose link component can be given by shrinking the circle factor of the target’s
link S' x R - obtaining s! x R — such that it intersects S? in exactly two
circles around p and ¢, and redefining S; and S; to be these circles. Then,
SPILS, < s' x R can be chosen to be simply the identity inclusion. The map
{p,q} — R, however, cannot be the identity, since then the side

SpIS, —— s' xR

} |
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of the span-map-to-be would not commute. (It commutes only ‘in the limit as
s' approaches a point.’) However, there is an embedding {p, ¢} — R induced
by this diagram after choosing elements in the fibres as depicted. This is easily
seen to be well-defined. Furthermore, the other side

SyS;, —— s' xR

I I

SE{p,q} — R*\R

commutes since every map involved is given by the identity inclusion. We have
thus constructed the desired span map.*

This map is term-wise an embedding, and so induces a cofibration
EX(S,,) — EX(RE)
of co-categories. We can thus set up the linked oo-category
EX (857(1)

S~

{0} EX(RR)

and denote it by, say, (31),.
The immediate question is whether there is an equivalence

5.)('((31)0) ~ 5.)((3(10))

of co-categories.

There is a bijection between their vertices but only in a useless sense: those
of the LHS is given by {0} I (Ro IT (R® \ R)g), and those of the RHS by
({0} I RY) I (R® N\ R)g, so the former counts 0 twice. This is a strong
indication that the RHS is the correct order of iteration. We invite the reader
to check that the RHS has the correct links as well, and in fact there is no such
equivalence as mentioned above. We conjecture that this procedure — starting
with deepest strata and applying £X pairwise while keeping track of induced
stratifications on higher links, and iterating £X — recovers the exit path oo-
categories of (conical, conically-smooth or homotopical) stratified spaces in
higher depth. But what, regardless, is the meaning of the LHS?

14Altelrnatively7 we could have included p and ¢ into R by the identity but chosen a different
embedding for the sphere, one flattened near the two circles.



CHAPTER 4
Quasi-(de)looping

In this chapter, we will take the first step towards transporting the tan-
gential theory of conically-smooth stratified spaces to the linked setting.

4.1. The additive Grassmannian

Let H be a separable real Hilbert space of countably-infinite dimension, so,
up to isometric isomorphism, the real sequence space £2.

Definition 4.1.1. For k € N, BO(k) := Gr(H) denotes the Grassmannian
of k-dimensional subspaces of H.

BO(k) is an infinite-dimensional (Hilbert) manifold modelled on H, and,
thus topologised, is homotopy-equivalent (e.g. [61, 4 ff.] combined with White-
head’s theorem) to the colimit infinite Grassmannian

Gri(R>) = colim Gri(R")
along the closed embeddings
Grk(Rn) — Grk(R”H)

given by the first-coordinate inclusions R" < R"~!. For our purposes, R>,
H, and ¢? are interchangeable.

Notation 4.1.2. BOy = [],-, BO(k), BOf; = [],~, BO(k).

Remark 4.1.3. The purpose of the notation is to distinguish it from the
(connected component of the zeroeth space of the real K-theory) spectrum
BO, which is given by a non-discrete colimit.

The aim of this section is to define a monoidal structure based on direct-
summing of vector spaces, in the spirit of the direct-summing maps
@: Gry(R") x Gr;(R™) — Grj(R™™)
Passing to infinite Grassmannians, these give maps
BO(k) x BO(l) — Gryy(H ® H).
Choosing an isomorphism H & H = H yields a map
BO(k) x BO(l) = BO(k +1),
which defines a map
@: BOp x BOy — BOy (4.1.4)
connected-componentwise.

49
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The problem with this map is that there is no choice of an isomorphism
H ® H = H that would make the map above associative, so it does not pro-
mote BOy to a topological monoid. For our purposes, it will suffice to point
out that an isomorphism H@® H = H, or equivalently a pairing function (bijec-
tion) N x N = N cannot be associative, as this would contradict injectivity.
In order to attain hands-on access to the stratified Grassmannian, we have
chosen to strictify (a.k.a. rigidify) (BOp, @) in a certain way instead. This in-
volves a trade-off: it does give a topological monoid, but also introduces some
redundancy.

Notation 4.1.5. BOYN (k) := Grj,(H®V).
Notation 4.1.6. BOY = {0} I [[y>, [, BOY ().

Remark 4.1.7. Of course, each BO™ (k) is equivalent (even homeomorphic)
to BO(k) = BO'(k), but this is non-canonical. Thus, with some choice of a
pairing function and some choice of parenthesisation for large exponents, we
have

BOX ~ {0} 11 Z, x BO.
We separated the zero vector space singleton {0} = BO(0) = BOY(0) from
the disjoint union so as not to count it separately for each N > 1.

Construction 4.1.8. Direct-summing of vector spaces gives maps
BOY (k) x BOM (1) = BON ™M (k. 4-1),
which define a map
@: BO x BOY — BOyY
connected-componentwise. The zero vector space acts as the identity. This is
easily seen to be associative.

Remark 4.1.9. The canonical associativity of direct-summing of vector bundles
on (paracompact Hausdorff) spaces translates to a monoidal structure on BOy
(or its stable version BO) only up to coherent homotopy. A systematic treat-
ment in this direction, i.e., the theory of E.-rings and its application to spec-
tra, is laid out in [50]; see also [68]. The E-structure on BOy; is parametrised,
at arity n, by the (contractible) space of embeddings H™ < H.

Construction 4.1.8 is considered from a slightly different point of view in
(68, §2], where (BOgY, @) with H relaxed to a vector space variable is called
the additive Grassmannian.

The construction and result of this note apply immediately to the other
varieties of Grassmannians such as the oriented, quaternionic, etc.

We will now deloop the topological monoid (BO¥,®). By N we denote
the homotopy-coherent nerve, which is recalled in Section 2.2.1.

Definition 4.1.10. By B®O we denote the Kan-enriched category with a
single object *, endomorphism space BOff, and composition &.

Definition 4.1.11. B®0 := N'(B®0).
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Remark 4.1.12. Note that B¥O is far from being an co-groupoid: only the
zero vector space is invertible.

4.2. B?0 in low dimensions

Using notation from Section 2.2.1, we will discuss explicitly the 1-; 2- and
3-simplices of BYO for future reference, and leave higher simplices to the in-
terested reader. For better readability, we will mostly not use the standard
notation for face maps from Chapter 2, opting instead to indicate which ver-
tices are included.

Warning 4.2.1. A ‘vector space’ is a point of BOYY.

l-morphisms. Let
F: Path[l] — B®O
be a map of simplicial categories, i.e., a l-simplex of B®O. Both objects
0,1 € [1] are sent to . The mapping poset F; has the sole nontrivial element
01 ={0,1} € No(Fp1), the image of which determines F'. Write

Vo1 == F(01) € Sing, = Sing,BOYY,

so Vo is a vector space. In fact, F' is determined by V.
More generally, for any k& > 1, a k-path Path[k] — C in an arbitrary
simplicial category C is determined by its values on simplices of dimensions

< k — 1 in the morphism spaces of Path[k], since the simplices of higher
dimensions are degenerate.

2-morphisms. Let
F: Path[2] — B0
be a 2-simplex of B¥O. Let ¢, F': Path[1] — B®O be the three faces, tq: [1] —
2] given by 0 +— a, 1 — b for a < b in [2], so that they are determined by
vector spaces Vo, = F(ab) € Sing, as above. The mapping poset

Fps = {012 > 02}
includes two new pieces of information: a vector space Vy1o = F(012) € Sing,
and, seeing >€ Ny (Fp2), a path v = F(>) € Sing; with source V15 and target
Voa.
Notice now that 012 is in the image of
Pfg X P&Ii — P(‘ff;,
namely 012 = 12U 01. As F is functorial, we have V1o = Vis @ V1. Thus,

F' is determined by three vector spaces Vyi1, Vio and Vis, together with a path
v: Via @ Vou = Vo2 in BO§Y. Pictorially:

k
Vor Via (4.2.2)
Vo2
* > k
\\\\\ ’W*'Y ////)r

Vi2®Vo1
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If V5 is the identity, i.e. Vjo = 0, then this is just a path from Vy; to Vps.

3-morphisms. Let
F: Path[3] — B®O
be a 3-simplex of BYO. There are six non-degenerate edges giving vector
spaces: Vg = F(ab), 0 < a < b < 3. The four non-degenerate faces
Labe: Path[2] — Path[3] — B0
are of the form of (4.2.2), which specifically is the face d3(F") corresponding to
(a,b,c) = (0,1,2). We have four paths of type Vipe = Vie @ Vi — Vi
Vig ® Vo1 = Voo, Vi@ Vo — Voz,  Vas @ Vig — Vig,  Vag @ Voo — Vas.
(4.2.3)
The mapping poset Fy% is as follows:

0123
/l\
013 023
\/
03

The triangles above depict the two non-degenerate elements of Ny (Fg%), which
F maps to Sing,(BOSY). That is, F' gives homotopies filling these triangles as
in

Voi2s
/ S
Vig® Vo == | <= Va3 & V2 (4.24)

S~ T

Vos

The first and third paths of (4.2.3) give further decompositions of the sums

on the left and right. Note the decompositions
Vorzs = Vias @ Vor = Va3 @ Vorz = Vas @ Viz @ Vi, (4.2.5)
Functoriality of F' implies thereby that the path Viia3 — Vi3 @ Vi in (4.2.4) is

equal to (Viss — Vi3) @ (Vi LN Vo1) with the left summand given by (4.2.3);
similarly, Vo123 — Va3 @ Vo is also already determined by (4.2.3), i.e., by ds(F).
Analogously, we see that all 1-paths in (the image of) F" are determined by its
faces except for the path V103 — Vos.

Remark 4.2.6. If all but V1, Vio, Vo3 are non-zero, then the right triangle of
(4.2.4) reduces to
Vos
N
— V2
e
Vou

while the left triangle is degenerate.
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4.3. The stratified Grassmannian

Our definition of the stratified Grassmannian is straightforward: it is the
under-oo-category of B®O of Definition 4.1.11 under its unique object *. (See
Section 2.2.2.) It is that suggested in [7, Remark 2.7] except for the stricti-
fication of BOy; into BO{Y and for being a quasi-category rather than a Segal
space.

Definition 4.3.1. V7 = x/B%0.

Remark 4.3.2. A theorem of Lurie, [52, 01ZS], states that if z € C is an
object of a Kan-enriched category C and x/C is the simplicial under-category
as defined in [52, 017Z8], then there is an equivalence of co-categories

N (2/C) ~ 2/N"(C)
if for every morphism f: x — y and every object z € C, pre-composition with
s
Home(y, 2) — Home(z, 2),
is a Kan fibration between Kan complexes.
This is not the case in our Kan-enriched category B¥0, since

— @ V: BOY — BOY (4.3.3)

is not a Kan fibration whenever V' # 0. Moreover, V7 is indeed not equivalent
to N(x/B®0), as can be inferred by comparing their morphism spaces.
Indeed, Let V' € BO™(l), W € BO"(k + ). The objects of */B¥0O
are the points of BOfY, and we have, by definition, that Hom, /geo(V, W) is
the ordinary fibre of (4.3.3) at W, so the subspace of BO"(k) consisting of
V' such that V' @V = W. This is empty if, for instance, W is spanned by
a (k + )-frame in the second summand of H" & H™. If non-empty, it is a
singleton. Now, by results of Joyal and Lurie (see Hebestreit—Krause [45] for
a direct proof), morphism spaces in homotopy-coherent nerves coincide, up to
equivalence, with those of the original Kan-enriched category, thus

HOHlth(*/B@O)(V, W) ~ HOIII*/BEBO(V, W)

On the other hand, by [51, Lemma 5.5.5.12], Homy— (V, W) is the homotopy
fibre of (4.3.3) at W, and so is equivalent to the space of paths in BO" "™ (k+1)
that start at V'@V for some V' and end at W. In other words, we would have
V7~ Ni¢(x/B®0) if BO were equipped with the discrete topology. This
justifies Definition 4.3.1.

We will now explicate the morphisms of V= up to dimension 2. Via the
identification A[0] x A[n] ~ A[n + 1] as in Remark 2.2.10, n-simplices of V=
are (n + 1)-simplices B¥O with no qualification, which is to say that we have
bijections

V. = Fun (Path[n + 1], B®0),
since BYO has a unique object. In particular, a 0-simplex of V= is a vector
space V' (recall Warning 4.2.1). Generalising Remark 2.2.11, the face and
degeneracy maps of V= can be written in terms of those of BYO as follows.
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Vo _ gB%0 (v _ (BP0
Lemma 4.3.4. di  =d; ", s;y =571 .

PRrROOF. We have (idg x 9;: A[0] x A[k] <= A[0] x Alk +1]) = (O144: Alk +
1] < Alk + 2]) upon identifying A[0] x Ae] ~ Afe + 1], and similarly for the
degeneracies. U

Remark 4.3.5. A l-morphism of V7 is as in (4.2.2), with source Vp; and
target Voo (see Remark 2.2.11) together with a path, which we can summarise
as Vo1 C Vig @ Vor = Vio. In this sense, morphisms of V7 can be said to be
‘injections of vector spaces’ if one disregards . Taking constant -, and using
the inner product on H to choose the orthogonal complements canonically,
includes proper vector space injections into the non-invertible morphisms of
V7. In view of Remark 4.3.2, identifying morphisms with injections amounts
to equipping BOfY with the discrete topology.

2-morphisms. We resume our exposition in dimension 2 before moving
on to our next result. The purpose is to push the morphisms-as-injections
point of view one dimension higher. It also serves to motivate the ideas in the
proof of Theorem 4.3.11 below but can otherwise be skipped.

A 2-morphism of V7 is a map
v: A[0] x A[2] — BPO

whose edges may be described as follows:

2
e T AN
Wiz Was
AN | e
Vo1 Vo2 Vo3

\|/

We have the following three induced faces of ~:

A[0] * A[1] <% AJ0] * A[2] L;B@o
AN ) J——

BP0
dz+1 Y

The {0, 1}-edge of A[2] is called its source edge, and the {0, 2}-edge of A[2]
its target edge. We say, therefore, that the induced face dg@ofy is its source
face, and df‘@ofy its target face. These two faces share their respective source
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edges:
AJ0] * AJ0] <25 A0] x A[1] ~ A2] 225 B2O

lN ’,,,——”"";01

which is labelled by Vg in (4.3.6). The source face of v is of type Vi C
Wis @ Vo1 =~ Vi, its target face of type Vo1 € Wis @ Vo1 =~ Vi3, and its
intermediate face is of type Vos C Was @ Voo ~ V3. Putting them together
gives the picture

Vor S Wia @ Vo —— Voo € Waz @ Vg —— Vo3
\V01§ / (437)
\
Wis @ Vin

Consider now the final face of ~:

It is of type I' = (Wiy C Was @ Wiy — Wi3). Concatenating the upper paths
in (4.3.7) and inserting I' gives

Vor —S€— Was @ Wi @ Vi Vos
c i 4.3.8
c Jron (138)
Wis @ Vin

The left triangle clearly commutes. The homotopy in the left triangle of (4.2.4)
(with all paths inverted) commutes the right triangle of (4.3.8) in view of
(4.2.5).

Remark 4.3.9. If all but Vg, Ve, Vo3 are non-zero, then (4.3.8) reduces to
Vou > Voo > Vos

~_

together with a filler 2-path in BOfY.

The core of V7. We have established above the sense in which the non-
invertible morphisms of V™ are given by proper injections of vector spaces.
It is desirable, however, that V™ contain no more invertible morphisms than
the original infinite Grassmannians, so that no more information is added
unnecessarily. Indeed, Theorem 4.3.11 below states just this.

Notation 4.3.10. For C an oo-category, let C= denote its maximal sub-oo-
groupoid, or core, i.e. the co-groupoid whose n-simplices are exactly those n-
simplices of C whose edges are isomorphisms C. This is indeed an oo-groupoid
by a result of Joyal [47]; see also [52, 019D]. We will write V= := (V7)~.
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We should note again that the second equivalence, from Remark 4.1.7, in
the statement below, is very much non-canonical.

Theorem 4.3.11. V= ~ BO¥ ~ x 11 Z, x BOy.

PROOF. First, given a k-simplex v of BOfY, we will construct a functor
[': Path[k + 1] — B0

of simplicial categories. It is necessarily trivial on objects. Let now i < j €
[k + 1] and let

a=(’>-..>a") ENn(Pff)
with subposets o = of, ..., a5 , oy € [k+1], o, < oy strictly for y < y', and
af =1, ap = 7.

If j = 4, then all such sequences trivial and each o consists of ¢ alone, and
therefore, by functoriality, I'(a) = s{(0) € (BOfY),, the n-fold degenerate zero
vector space. Let us therefore assume ¢ < j.

If i > 0, we also set I'(a) :== s{(0).

If i = 0 and so j > 0 by assumption, every subposet o* consists of at least
two elements. Consider then the associated map

A: [n] — [K]

T oy — 1.
It is functorial since the partial order < is defined to mean that « is given by
subsets of [k + 1] satisfying a® D --- D a”, so af € o” and therefore af < of’
whenever < /. It is moreover well-defined since of —1 < j —1 < k, and
az —1>af —12>0. Now, the rule
®: N, (P?) — Alk],, = Homa([n], [k])
ar— O(a) =A

is simplicial: let §: [n'] — [n] be a poset map, so (0*(a))* = a®@ for x € [n/],
and observe that ®(5*«a)(z) = ag(x) —1=0"(P())(x).

We thus obtain the maps

I': N, (P¥) = (BOF)n
a— d(a)™y
for n > 0 which assemble into maps
I': Hompaghe41) (4, j) = BOR

for all pairs ¢ < j in [k + 1]. The simpliciality of ® implies I'(0*a) = 6*I'(«v),
i.e., the simpliciality of I' on morphism spaces.

We will now show that I' is functorial. Let v € N,, (PZO;)), g eN, (Pjolp) be
sequences as above, with ¢ < j <[ in [k + 1], so

BUa = (BOUaO > ... EB”Ua”) eN, (Pflp)

If i = j =1, then I'(B U «a) = s§(0) & s§(0) = sp(0); if ¢ = j < [, then
P(fUa)(r) = (f*Ua”)y — 1 = p3 — 1 since a® = (af) is degenerate and so



4.3. THE STRATIFIED GRASSMANNIAN 57

(8" U a*)y = of = B, hence T(BUa) = T(8) = I(8) & 50 = T(§) & T(a); if
i < j <, then analogously ®(fUa)(x) =a3 —1,and so I'(fU o) =T'(a) =
I'(B) UT'(«r) because j > 0 gives I'(8) = s{(0) by construction.

Let us observe that the maps

U: (BOY )k — Vi
v ¥U(y) =T
assemble into an co-functor ¥: BOY — V7. By Lemma 4.3.4, we must show
that
U(diy) = di0(P(7) and U(siy) = 55,0 ((7))
for all i € [k]. For the first, we may assume k > 1, and take 7 = 0, [ > 0,
and o € N, (Fy}) = Hompani)(0,1). The face map 9;: [k — 1] < [k] composes
with ®(«): [n] — [k — 1] to give
[n] — [K]

so that W(d;v)(«) is the pullback of  along this map.
On the other hand, dfﬁo is given by pre-composing with

O;+1: Path[k] — Path[k + 1], (4.3.12)
which on « reads 9;41(a) = (410" > -+ > 9i10™) € Hompapnpet1] (0, 0;410)
with 8i+1oﬂ = a¢+1(a“f), Ce ,8i+1 (Oéfk) = O, @-H (Oé%), Ce ,8Z»+1l and so
as—1, aof <1
3Z~ ‘T—l:f)z 33_1: 2 ’ 2=" .
+1(O{)2 +1(a2) {ag’ aw >4 1

and thus

10)
(0:2(c))"y = (®(Fpr100))™

By the above, we obtain 0;,®(a) =
U(diy)(@) = ®()"(diy) =
= 071 @)™y
= A0 (T (9)(a).
Compatibility with degeneracies can be verified similarly.
We have thus defined an oco-functor
U: BOY — V= = V7,
which necessarily factors as depicted.
Let now

®(0i

o: Path[k + 1] — B®0O
be a k-simplex of V=, which is to say that the restrictions
oliji: Path{i < j <1} — Path[k + 1] = B®0,
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as 1-morphisms of V77, are isomorphisms. By Lemma 4.3.4, the relevant triples
satisfy ¢ = 0, j > 1. As discussed at around (4.2.2), olp;; is fully determined
by a path in BOf of type

o(jl) ® 0(07) = o(0L)

where ¢(0j) is the source of olyj; and o(0l) its target. However, since V=
contains no morphism of type W — V if tk(W) > rk(V), we conclude o (jl) =
0 since olgpj is an isomorphism. Since the pair 1 < j < [ was arbitrary,
this implies that for any o = aq,...,a, € Ny (Pﬁ’) we have o(a) = 0 by
decomposing o = a1, U -+ - U ag. Thus we obtain

a(0,a) = 0(0,a1) (4.3.13)
by decomposing 0, = a U0, .

Now, as was noted in Remark 4.3.2, we have Homy (V, W) is equivalent
to the space of paths in BO§Y that start V'@V for some V' and end at W, and
we have shown that within V= this reduces to V' = 0, implying, for V and W
in the same connected component of BOY, that Homy~(V, W) is equivalent to
the space of paths V' — W, which is exactly the morphism space of BOjf from
V to W. Moreover, along the former equivalence, ¥ maps as the identity on
morphism spaces. Since it is moreover a bijection on objects, we conclude (by
[52, 01JX]) that it is an equivalence onto V= by virtue of being fully faithful
and essentially surjective. U

Remark 4.3.14. Equation (4.3.13) may seem to lead to the following ‘point-
set” Ansatz to constructing an inverse to W, with the goal of promoting V= ~
BOfT to an isomorphism. Namely, consider the sequence

AP =(0,1,2,... k+1>0,23,... k+1>--->0,k+1) e N, (P},,).
Its image o(A*) € (BOS); is of type
0(0,1) = 0(0,2) = --- = o(0,k +1).
The map ¥~': V= — BOY, 0 — o(A), however, is not necessarily simpli-
cial. To compare faces, let i € [k] so that we have o(d;AF) = d;(c(AF)),
while (d/C0)(A*1) = ¢(9;41A*') by definition, so one might expect that

o(d;AF) = o(9;41 A" 1), giving compatibility with face maps.! This need not
hold: for instance, taking k = 3 and 7 = 1, this equation reads

While their vertices agree, the functoriality of o does not necessitate that these
two simplices agree.

Still, it is possible to give a map V= — BOJy using an idea to be developed
later. Namely, to o we can associate its value on a certain topological k-simplex
vV C ‘N. (P& b +1)| which, after passing through the adjunction of geometric
realisation with the singular chains functor, yields a k-simplex of BOY. We
get back to this in Remark 5.2.53, using the construction of V' in Section 5.2.4.

'Here, 0,41 applies to A*~! as in (4.3.12).
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The following suggests */N"(—) as a means to adjoin non-invertible paths
to a smooth collection of objects with a monoidal structure.

Corollary 4.3.15. Let M be a topological monoid whose only invertible ele-
ment is its unit. Then

(+/N"(BM))= = M
Moreover, (x/N'(BM)) ~ N(x/BM) if and only if M is discrete.

PROOF. The proof of Theorem 4.3.11 applies mutatis mutandis. For the
second statement, see Remarks 4.3.2 and 4.3.5, which also apply for the same
reasons. 0

Remark 4.3.16. This is not to say that x/— and N commute if and only if
the argument simplicial category is discrete, but only that this happens to be
the case in the situation of Corollary 4.3.15.






CHAPTER 5
The unpacking map

Our next goal is to construct a map
U:EX(BO(n,m)) -V~

from the exit path oco-category of the (n, m)-Grassmannian of Example 3.2.17
to the stratified Grassmannian. The theory of tangential structures on linked
spaces will then be able to interface with the conically-smooth variant.

5.1. The unpacking map in low dimensions

The map restricted to BO(n), and BO(n+m), inside EX = EX(BO(n, m))
is defined to be inclusion into the maximal sub-oo-groupoid of V7. It remains
to define the restriction

EXi1 D Py — Vil = Fun (Path[k + 2], B¥0),
for £ > 0. We will explain dimensions 1 and 2 verbosely before giving the full

construction without further motivation.

An element (v, 1) of P§* — the exit index in this dimension is necessarily 1

— corresponds to a path v in BO(n + m) whose initial point is a direct sum

Via @ Vo1 with Vo € BO(n), Vis € BO(m). Denoting the endpoint by Vg, 7

determines a 2-path by arranging the data exactly as in (4.2.2). We have thus
defined

U’§1: (S‘Xgl — V7. (511)

Lemma 5.1.2. The assignment Ul|<y is functorial, i.e., compatible with all
relevant face and degeneracy maps.

PROOF. The source of the image of v is Vjy;, and the target is Vjo, which are,
by construction, the images of the source and target of v in £X, respectively:

47 (U(3,1)) = Vor = U (pr (a°"*™) ) = U (d¥(7,1).
and
4y (Uy) = Voo = U (d5°""™y) = U (d5* (1))

Compatibility with degeneracies is immediate since in these dimensions there
are no degenerate non-invertible paths. U

Theorem 5.1.3. The assignment U|<y of (5.1.1) extends to an oo-functor
U: EX(BO(n,m)) — V.

We call U the unpacking map. Such an extension involves, as we will see,
some contractible choices. Somewhat mysteriously, we will see that none of

61
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these choices breaks functoriality. Our construction will be formulated as an
inductive proof of existence. First, we will discuss what U has to do with
2-morphisms at a phenomenological level so as to elucidate the essential issues
to be overcome.

Construction 5.1.4. Assignment (5.1.1), Ul<;: EX<; — V77, extends by
functoriality to a subset of simplicies of £X" in every dimension. That is, for
any finite-order simplicial operator O = [[ o, a; = s, or dj; for any collection
of indices 7, 7' such that the application makes sense, we set U(O(v,1)) =
OU(y,1) for any (7,1) € P&. Lemma 5.1.2 states exactly that this is well-
defined. In effect, this gives a new definition only on degenerate simplices of
dimension higher than 1 stemming from exit 1-paths, so we could have con-
sidered o = s;, only. This defines U on the simplicial subset of £X generated
by BO(n), BO(n +m), and P C EX;. We write EX<; for this simplicial
subset, and again
USl : 5X§1 — V7
for the resulting co-functor.

We will observe a filtration |JEX <, = EX, whereupon it will suffice to
extend U along it. This will be our strategy to prove Theorem 5.1.3.

5.1.1. 2-morphisms. Exit paths in P2 come in k + 1 classes according
to their exit indices, which need to be mapped to V7 in different ways.

First, in order to uniquely determine a 3-path in B®QO, it is enough to map
out of the sets Ney(P;}) into BO<y = (BOfY)<2, since higher dimensions are
degenerate. Indeed, in general, a k-path in B®O is determined in dimensions
< k-1

Notation 5.1.5. In the rest of this work, we write BO = BOY at the risk of
confusion with common K-theoretical notation.

Definition 5.1.6. We call those 1-morphisms in Path[l] that are of type
No(P%) 3 a = {a < B} C ]

simple, as they are simple with respect to U. The remaining morphisms we
call composite. Similarly for higher morphisms.

Example 5.1.7. For instance, in Ny(PyY), (1234 > 124) = (234U 12 >
24U12) = (234 > 24) U (12 > 12) is composite, but 1234 > 14 is simple. More
generally, any arrow with target a pair is simple, and the others are composite.

The simple 1-morphisms in Path[3] are of type a8 C [3], which by a 3-path
are mapped to V,3 € BOy. When § = a+2 (of which type there are two pairs),
there are arrows a,a+1,8 = a+1,8Ua,a+1 > aff in Nl(Paog), which
determine paths Vo1 5@ Vo a41 — Vag, ie., Via® Vo1 — Vg and Voz®@Vip — Vi
in BO1, namely two of the face 2-paths. The remaining two faces are supplied
analogously by considering (o, 5) = (0, 3) and the compositions 013 = 13U 01
and 023 = 23U02. Finally, again for («, 5) = (0, 3), consider 0123 = 23U12U01,
which is to be mapped to Voios = Vaz @ Vip © Vi Out of Ni(Fy3) we receive
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paths Voo — Vos, Voios — Vois, Voies — Voes. The two non-degenerate
elements (0123 > 023 > 03) and (0123 > 013 > 03) in Ny(Fy3) are to map in
BOQ to

Voos Vas @ Voo
/ \ = / \ (5.1.8)
Vorzz ———— Vo3 Vas @ Vig @ Vin > Vo3
and
Vois Vis @ Viu
/ \ = / \ (5.1.9)
Vorzz ———— Vo3 Vas @ Vig @ Vi > Vo3

We have thus summed up the data needed to provide a functor Path[3] —
B®0.

Now, let us start with paths of exit index 2 € {1,2}. Such an exit path
(7,2) (in PP C EXy) consists of a 2-simplex v € BO(n + m), of type

y lfv@, (5.1.10)

/ /

where the bottom edge comes from BO(n) x BO(m) (whence it is @ of two
paths). If (7,2) is in EX <y, then U(vy,2) is already defined by Construc-
tion 5.1.4. Let us assume, therefore, that (v, 2) is not degenerate. The natural
choice for the image, visualised as a 3-simplex of B®O, is

Indeed, the edges in (5.1.10) supply the face triangles. The fact that the
bottom edge is of type v &y is crucial, since the summand paths supply the
triangles adjacent to the edge decorated by the zero vector space. The only
wrinkle is that the upper face requires a path W’ — W, which can be taken to
be the (standard) inverse of vy, which we will denote by ~y;'.> As for (5.1.8),

Wweaev
@ Yoo (5.1.11)

WaeV o) y K

IThe meaning of inversion, in any dimension, is recalled in Notation 5.2.4.
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note that we must yet choose the paths W&V - W @V and WV — K
(corresponding to the arrows 0123 > 023 and 0123 > 03). To this end, consider
the diagram

Weaev — 5 K

~
idw’@’YVT YW DYV Ve
~
T Bidy

and choose the obvious fillers. By id4 we mean the constant (degenerate) loop
soA at A. This suggests using (i) = idy ® v, (i) = (1 Didy) *7e (we write
concatenation from left to right) whereupon the obvious filler can be chosen.
Similarly, for (5.1.9), i.e.,

WeaeV

(i)’

(5.1.12)

WeaeV y K

consider
wWoVv —% s K

<
’y;VléBidvT W et %@l
WeV — WaolV’
idw &yv
and proceed similarly. This completes the construction of N<o(Fgs) — BO<

and so of the 3-path Path[3] — B®O associated to the exit path (v, 2).
The image of an index-1 exit path

K % K

WT 4 (5.1.13)

WeoVv

is constructed analogously, with its picture as a 3-simplex of B¥O given by

We have thus defined EX <y — V5. (A systematic account will follow in Sec-
tion 5.2). Writing

gXSQ = (EXQ AN g.)(gl) U SXSI
for the simplicial subset of £X generated by £X <1 together with the elements
of P2 that were not in EX <1, we claim that Construction 5.1.4 applies mutatis
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mutandis to yield an oo-functor
USQ: EXSQ — V€—>,

so we must provide an analogoue of Lemma 5.1.2. In particular, this will show
that the contractible choices we have made along the way have had no bearing
on functoriality.

Lemma 5.1.14. The map U<y is a well-defined extension of U<y.

PRrOOF. Consider again an index-2 exit path (-, 2) as in (5.1.10). Its source
edge is the path d5¥(v,2) = (yw:V — V') € BO; C £X;. Since its two
remaining edges are vertical, they are the elements of P induced by e and
Yo Now, recall Lemma 4.3.4 that U(y,2) is identified with an element of
B®03; = Vy via Al0] x A[2] ~ A[3]. Accordingly, face maps apply on the
factor A[2], i.e., 0 acts as idaj) x 0. In the picture in B¥Og, this means that
when pulling back along a face map 0: A[1] < AJ2], we restrict to the triangle
whose top edge is specified by 0; e.g., 02: A[1] — A[2], which skips 2, applies
to give

1
d;ﬁ}U(% 2) = V/\‘ \0 ’

s pN
0 Vi— 2
which is precisely U(7yy). As for the compatibility with degeneracies, there
is, by construction, nothing to show. We have s;U<s(7,2) = U<a(s;(7,2))
since U<a(s;(7,2)) = s;U<a(7,2) by construction, and this is well-defined if
si(7,2) ¢ EX <1, so that U<y does not clash with U<;. But s;(7,2) = O(v/,1)

would imply
(’y, 2) = diSi(’}/, 2) = dzO(’}//, ].) = Ol(’}//, ].) S ngl, (5115)
which is precluded. This shows that U<, is a well-defined extension of U;.

We leave the analogous treatment of the remaining two faces and of the index-1
case to the reader. |

Remark 5.1.16. So as to avoid confusion, note in particular that the top face

]l —w——3

given by 75, is not a face in V=, nor is vy € BO(m); C EX, a face of (v, 2)
in EX.

Remark 5.1.17. We had to assume that (7,2) is non-degenerate in order to
apply the construction above, or else we would have broken functoriality. For
instance, suppose the exit 2-path in question is degenerate: (7y,2) = so(7/,1) =
(s0',2). It can be easily verified that the construction above applied to this
would yield (i) = id and (ii) = id x4’ in (5.1.8), whereas the counterparts of
these edges in so(U(7/,1)) are id and id, respectively. These, as well as the
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filler 2-simplices, are not necessarily the same. There does not seem to be a
natural closed-form formula for U, hence our inductive-recursive construction.

Remark 5.1.18. That, e.g., a 2-path x € EX5 is not in (EX <)y C EXy is
equivalent to it not being degenerate in the usual sense. Indeed, say z = Oy
for some simplicial operator O and y € £Xy/;. Then O must contain at least
one degeneracy, since otherwise y would be in £X>3 or y = z already. So let s
be the last (left-most) degeneracy in O and move it through the face maps in
O to the left of s using simplicial identities, so that O = §'O’ for a resulting
degeneracy s’. Then x = 'O’y is degenerate.

We will note the proof for completeness. Manifestly, it applies in any
dimension.

PROOF OF REMARK 5.1.18. One can use d,sg = sg_1dy for a < S,
dosp = id for a € {B,5 + 1} or dosg = spda—1 for a > f + 1. After us-
ing the latter, move on to the next degeneracy in O, and iterate. If there is
none, then we are again in the situation where O only contains face maps so
that y € £X >3, which is absurd. 0

Still, we will keep using these simplicial closures for convenience, as they
simplify some arguments — notably the latter part of the proof of Lemma 5.1.14,
which concerns degeneracies. It is valid in any dimension.

5.2. The proof of Theorem 5.1.3

Now we proceed to give the general construction. We will first give a
systematic account of
Pt — [Path[3], B*O]
in such a way that the ideas generalise to all dimensions. It will be conventient
to slightly rearrange the visual representation of exit paths.

Notation 5.2.1. For (v,1) € P, the diagram W &V — K depicts v € BO;.

Instead, V' M K or V-2 K for short, depicts (7, 1) more informatively.

K
Similarly, we sometimes depict (v,2) € P2 by W s ete,
V-V
NOTATION. [A, B] .= Fun(A, B).

Notation 5.2.2. We write Mt: BO(n) x BO(m) — BO(m) to denote the
second coordinate projection. When we apply 91 to a low face of an exit
path (7,7), we mean that, first, the corresponding face of « is to be taken,
which is then (unambiguously) to be identified with a simplex of the link
BO(n) x BO(m), and then 91 is to be applied. Namely, we have, by abuse of
notation, a map

N: P2 — BO(m),
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for each * > 0, given by the composition

(7,3)—=Tj=70C;

P - y P, —» L, —— BO(m),

where we have not omitted * since P is not a simplicial set. Note that the
result is degenerate unless the exit index is maximal.

Definition 5.2.3. The maximal low sub-simplex of (v,j) € P£ is (the image

..........

and call it the normal component of (v, j).

Notation 5.2.4. For X a space, we denote by Op the canonical isomorphism
X ~ X°P of Kan complexes, by which we mean Sing, (X) ~ Sing, (X ). It is
given by inverting simplices by pulling back along the maps

Op: A" — A", (ag,...,a,) — (an,...,a0)
of the standard topological n-simplex, n > 0. See e.g. [52, 003R]. For example,
when we wrote v~! above and called it the ‘canonical inverse’, this meant
71 =O0p(y) = <A1 o0 AL X), so that dyy™! = div, diyv~' = dyy. More
generally, for any simplicial set S, we have S = S,, and, in dimension n,
d¥" =dd_,, s77" =57

n—i) “1 n—i*

Notation 5.2.5. Let ap,...,ap € [k]. By Pathlag,...,a,] = Path[{] we
denote the full simplicial subcategory of Path[k] generated by the objects
Qp, ..., Qy.

5.2.1. P& — [Path[2], B*O]. We define U hereon by

=1
K No(F%) =+ BOo, D.ar{a—1}(1.1) = {; o2
(’Y’ 1) N 7 o . . ’ o
T No(Pr) = BOo, 12+ OpN(y, j) =N(y.j) =W

WeVv Ni(Py2) = BOy, (012 > 02) + 7.

This induces U<;: EX <3 — V7 as in Construction 5.1.4.

5.2.2. P£ — [Path[3], B®O]. While skipping to the induction step below
is now possible, we will treat this dimension explicitly in order to illustrate the
ideas. Let (7, ) € P{ and assume (v,j) ¢ EX <.

Induced faces. We first define the faces of U(v,j). The faces df,,U(7,2)
are defined by U<, via functoriality, i.e., by

d} " (Uza(7, 7)) = Ua(di* (7, 4))- (5.2.6)

2We do not distinguish BO(n) x BO(m) and its image in BO(n + m) in notation.
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This fixes U<z(7, ) by Lemma 4.3.4 on the subcategories Path|0, k, [] = Path|[2]
of Path[3], for 1 < k <1 < 3 (Notation 5.2.5). This is consistent due to the
well-definedness of U<; as shown in Lemma 5.1.2.

The top face. The remaining B®O-face d5°°(U(y,j)) is the restriction to
the full simplicial subcategory Path[1,2,3]. Any pair 1 < a < 5 < 3 specifies
a restriction along Path[a, 5] < Path[1, 2, 3], and writing 0 for the remaining
element of {1,2,3}, these restrictions must by functoriality coincide with

d57PdE7O(U(, 5)) = d§ °d5 °(U(y, j))
= d5"0dY" (U(v,5))

(5.2.6) .
=" dg" UL (d5Y (7, )
where we used the simplicial identity d;d; = d;_.d; for i < j for the first
equation and Lemma 4.3.4 for the second. In other words, the edges of the
dOBEBO—face are determined already by U<;. Therefore, only the restriction to
the (2 — 1 = 1)-dimensional simplices of No(FPy%), that is,
N1<P10§) — BOI
(123=23U12> 13) o (Upy (23) @ Upy (12) = U (13)

= (U(dodo(7,5)) @ U(doda(7,5)) = Uldodi(7, 7))
remains to be specified. This is determined by 1 by setting

U INL(P3) = OpN(, ). (5.2.7)
This is well-defined since 2 sends exit k-paths to (k — 1)-paths in BO.

Remark 5.2.8 (interrupting the proof). We should note that it is immaterial
that (5.2.7) is ‘not functorial’ (although U will be). As noted in Lemma 5.2.15,
the direct sums appearing in the d05®o—face are trivial in that all summands
but one are zero, the non-zero one being determined by the exit index j. We
use Op to supply only the path in BO(m). We have U, ;)(23) = 0 if j = 1,
and U, ;(12) = 0if j = 2. If j = 1, the edges of dB%0 are specified by
simpliciality as in
2
2N
W 0
e RN

l—w—3
and Op(y,1) is Op(idw) = idyw: W = 0@ W — W. Here, (5.2.7) happens
to be functorial as d03®o happens to lie in V=. However, if j = 2, the filler of

2
0N\
0 w’
s RN
l —w——3

is supplied by Op(v,2) = Op(yw) = %;/1: W'=0@® W' — W. This breaks
functoriality in the sense that dff@o is not invertible as a morphism in V= from
0 to W. In any case, the path is as desired.
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1-paths induced by functoriality. Some 1-paths in the image of U(7, j)
are determined by the data provided thus far and by imposing functoriality
(cf. Example 5.1.7). Namely, we have the following decompositions:

(i) = (0123 > 023) = (23U 012 > 23 U 02)
= idy3 U [012 > 02]
€ Im (U Ny (Pyy) x Ni(Fph) — Nl(P&g)) ,
(i)’ = (0123 > 013) = (123 U 01 > 13U 01)
= [123 > 13| Uidg;
€ Im (U N1 (Pr3) x Ny(Fph) — Nl(Pé’g)) :
Thus, functoriality imposes
U, () =idu, @) & U, (012 > 02), (5.2.9)
Ui (i) = U123 > 13) @ idy,_ o) (5.2.10)

where the first non-constant summand is determined by (5.2.6) and the second
by (5.2.7). In particular, this systematises the ad hoc assignments in (5.1.11)
and (5.1.12).

Remaining 1-path and 2-paths. It remains to specify U(v, j) on the ‘long
path’ in Ny (Fg%) and on Ny(Fy4). In contrast to paths induced by functoriality,
03 is simple, so

(i) = (0123 > 03)

presents a genuine choice, and was not handled systematically in Section 5.1.1.
It is considered most naturally in conjunction with the two non-degenerate
elements in Ny(Fy3) to be mapped, as it is their (necessarily-)common com-

position:
1d23U[012>y \123>13 |Uido1

5% AG
First, note that, regardless of exit mdex, this square decomposes into two

triangles:
1d23U[012>y \123>13 U1d01

(5.2.12)

‘O
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For j = 2 (using the labels in (5.1.10)), this reads
WeaolaV=WaoV

W eV < Tw SV WeaeVv >

\/

and for 7 = 1 (using the labels in (5.1.13))
oewWeV=wWaeV

ido@V Wid\/:idw@idv

00 K=K « WoVv

\/

For both indices, the bottom triangle is filled by ~ itself, and the top one has
a canonical filler. This suggests assigning to (ii) the outer-left concatenation:

U, (i) = Ugy,5(0123 > 023) + U, (023 > 03). (5.2.13)
Accordingly, U(, j)|N2(F%) is determined by said fillers.

Let us specify the fillers in the case j = 2 explicitly.> There is an interme-
diate triangle

WeV

id@’yvl le@id (5.2.14)

WeaeV —— WeaV

Tw DYV
filled by the direct sum of the degenerate 2-path so(yy), i.e

V
SN

i ! < ~ ‘
14
and the Q-path

W/ 1
TN

W' — W
w

3This will be systematised in Section 5.2.4 and can be skipped. In fact, we will prove that
even this concatenation needn’t be explicated. The case j = 2 is of special importance in
said section to the proof of Proposition 5.2.39.
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given, writing v = yy temporarily, by*
[: A% — BO(m), (to,t1,t2) > Y(t1, 1 —t1).

Indeed, recalling Notation 5.2.4, we see that its edges are as desired:

(doT)(to, t1) = T(0, L0, t1) = y(to, 1 — to) = ~(to, 11),

(diT)(to,t1) = T(t0,0,t1) = v(0,1) = dyy = W,

(doT)(to, 1) = T(to, t1,0) = v(t1, 1 —t1) = y(t1, to) = v (to, t1).
The two 2-paths put together (and reparametrised®) provide the right half

WeaeV

v
:

WaV +——id W eV <—wew— WV
\769’/

with the bottom right triangle filled by ~ itself. The triangles on the left are
both filled by degenerate 2-paths. The (contractible) choice made in pasting
is never an issue — we have identified these desired 2-simplices as exactly those
that are not required to satisfy any further conditions.

When j = 1, the analogous finer triangulation is

wWeVv
y 7|® X
\l(
K 3 id K « Yo WeV
\ "/IK
YK 4 Yo'
K’

which has the obvious degenerate fillers, and again + itself in the lower right.
This concludes the construction of U<g: EX <9 — V7.

5.2.3. Ad dOB®O. Before moving on to the induction step, we will construct
dB“OU(~, j), the top face, with a closed-form formula (Construction 5.2.21) in
every dimension in a way that generalises the above constructions in dimen-
sions < 2.

4The point of this elementary exposition is to show that one can fill such diagrams canonic-
ally, without having to appeal to non-constructive existence statements, contractibly-unique
as the results may be. A systematisation of this construction will play a central role in the
proof of Proposition 5.2.39.

®0ne can do this as visually prescribed by the diagram itself. We do not need a general
oo-categorical pasting scheme for this, but can do it instead within BO(n + m). For some
related recent progress on this in a slightly different context, see [42] and the references
therein.
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Lemma 5.2.15. Let (v,j) € P C EXy.1 and write, as before, 0,1 Vo, =
(7, 7)|i=1 for the edges of U(vy, j) € [Path[k+2], B¥O], and similarly i, — Vi,
with 1 <14 < ¢ <k + 2 throughout.’

(1) We have Viy = N(v,7)]i-1 for 1 < i < j < € < k+2, and zero
otherwise.

(2) Let ay < -+ < oy, be a sequence of natural numbers within the interval
1,k +2]. Let N = N, € {1,...,n} be the smallest index such that
ay > 7 if it exists, and set N =1 otherwise. Then we have

V _ Voszl,OéN = VOéN,hk-‘rQ ;A 07 N > 17
Qal,...,0n 07 N — 1

Consequently, there are no non-trivial direct sums in the top face.

PROOF. First, note that every top edge Vag, 1 < a < 8 <k + 2, is within
the fibre BO(m) of the link projection, since it is the connecting edge in the
restriction of U(v, j) to Path[0, v, ] C Path[k + 2], which can be depicted as
the 2-face

V.
a—2 43

Vo,;\ 0 /“/0,5

in B¥0, = V;7, given by construction by (7, j)|a-15-1: Voo — Vo s underlied
by Y]a-1,8-1: Vag®Vo.a = Vo,8. Now, by construction, (v, j)o,.. j—1 is low and
(7, 3);,...n is upper. Thus the restriction of U(v, j) to Path[0,1, (] for £ < j is
wholly within BO(n), so V;, = 0. Similarly, it is wholly within BO(n+m) for
¢ >1>j,sothen V;, = 0as well. Thus, V;, # 0implies 1 <7 < j </l < k+2.

Conversely, if the inequalities are satisfied, then V,;_; is low and Vj
is upper, so the connecting edge V;, € BO(m) is non-zero, so in toto the
un-equalities specify exactly the non-zero top edges.

Note that

Vie=Vipif j <l <k+2as well, (5.2.16)

since y|i—1,0-1: Vie @ Voi-1 — Vog and |11t Vie @ Vo1 — Vo have
the same source 7|,y = Viy ® Vo1 = Vi & Vo1 € BO(n + m)y. In
particular, the first statement is well-defined. That V;, = 9(v, 7)|;—1 is imme-
diate: 9M(v,j) = pry(yli,..j-1), s0 (¥, j)li-1 = pra(v]i-1), so Y[ie is of type
Y]i1,0-1: Ny, 7)]i—1 B Vo = Vo

The second statement is a straightforward consequence. We have

Val,...,an = Van—lan S---D VaN_l,aN SSRRRRS Voq,rm'

By the above, the summands to both sides of V,,, | o, are zero. That
VO‘N—lyaN = VaN_l,k-i-Q
6We need not assume that U has been constructed, but may use instead the construction of

Section 5.2.1 for these edges, since the statement concerns only the restrictions of U(~, j)
to Path[0, o, 8] C Path[k + 2].
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follows from (5.2.16) by setting ¢’ = k + 2. If there exists no N as described,
then every summand is zero since each Vg4, is in BO(n). If N = 1, then each
Vo.a, is in BO(n 4+ m) so that every summand is again zero. U

Remark 5.2.17. The simplification noted in Lemma 5.2.15 is specific to our
stratification depth being 1 and not higher. If it was higher, we would see
nontrivial sums appearing in the dOB@O—face as well.

Before we proceed, let us recall a fundamental fact about the simplicial
category Path[n]:

Proposition 5.2.18 ([51, §1.1.5]; [52, 00LL]; [52, 00LM]). For
i, € [n], there is a canonical isomorphism

Hompan o (1, €) = (A[1])*¢77Y
of simplicial sets. Consequently, there is a canonical homeomorphism
|HOHIPath[n] (27 6)‘ = [07 1] X(Ziiil)'

ProOOF. The first step is the construction of an isomorphism between
(A[1])*" and the nerve of the power poset P({1,...,n}) of the set {1,...,n},
ordered by inclusion (and not reverse inclusion). This elementary observation
was stated in [52] without proof, so, for completeness, we will provide one.

A vertex of (A[1])*" is specified exactly by a function from {1,...,n} to
the 2-element set (the vertices of A[l]), which specifies exactly a subset of
{1,...,n}. More generally, a k-simplex ¢ = (¢;); of (A[1])*" is a collection
of n poset maps ¢;: [k] — [1]; On the other hand, a k-simplex

a=(a"C---Ca") eN(P({1,....,n}))
is a non-decreasing sequence of subsets o C {1,...,n}. Now, we may interpret
¢i(z) € [1] as answering the question whether or not the element i € {1,...,n}
belongs to o*, the value 0 giving the affirmative. Thus, the function

(A[DE" = PHL, .- np)k,

¢ = (¢i)izy — (O‘z)izo
with
ag ={i€{l,...,n}: ¢(x) = 0}
is a bijection. It is well-defined (the subset inclusions hold) since each ¢; is
a poset map. Varying k, these functions are easily seen to assemble into an
isomorphism of simplicial sets.
The subsequent isomorphism

No (P({1,...,n})) = No(Fyh i)

is given by taking complements of subsets and thereby un-un-reversing the
order. It is spelled out in [52], as is the homeomorphism that is the second
statement. Suffice it to say that a vertex 8 € No(Fy}, ;) is a subposet of [n+1]
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of type B =0,5",n+ 1 with 5/ C {1,...,n}, and so the rule
No (Pon+1) = No(P)
Al ,n}pN

defines a bijection. It is easily seen to lift to an isomorphism of simplicial
sets. U

Remark 5.2.19. Because, in the proof of Proposition 5.2.18, the value 0 is
(necessarily) taken to give the affirmative, the resulting cubes, when depicted in
the standard way (mapping the vertices of (A[1])*" according to ¢ = (¢;),
>, ¢i(0)i with i € R” the 7’th standard basis vector), will differ from those
in Examples 5.2.20 and 5.2.33 below, but only up to a change of basis. For
our purposes, this is not a problem: a precise choice of basis will be used only
in the proof of Lemma 5.2.37 which is a convexity argument after which the
choice may be reverted. Convexity is preserved under linear transformations.

(op) «

Occasionally, we will call the underlying posets F;,”™ ‘cubes’ as well. When

we do, Proposition 5.2.18 will be understood.

Example 5.2.20. In particular, Lemma 5.2.15 fully specifies the vertices of
PP, under U. The k-cube Py}, can be depicted for k = 3 as follows:

12345 — 1235

/ /l
1345 ———— 135
lll
1245 ——|—— 125
/
145 » 15

e If j = 1, the image of this cube under U(~, 1) must have all vertices
equal to Vis = Mo = MN(7,7)|o, so non-degenerate sequences S €
N3(Pp3) of arrows from (the image of) 12345 to 15 must all be of type
Mo — NNy — Ny — No.

e If j = 2, the image under U(+, 2) must be of type

Ny — My
a -
m0—>m0

| m—|—m
/ /

Ny —— Ny
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hence non-degenerate sequences as above, deleting repetitions again,
must be of the following types:

I — My — g — N
‘ﬁl—>‘ﬁ1—>‘ﬁ0—>‘ﬁ0
‘ﬁl—>’ﬁ1—>‘)’tl—>‘ﬁo

On the other hand OpN(vy, 7) is a j — 1 = 1-path of type (M — Ny).
o If 7 =3, we have

so non-degenerate sequences as above must be of the following types:
My — My — g — Ny
My — My — e — Ny
Ny — Ny — N — N
Ny = Ny = 9Ny = Ny
Ny — My — N — N
On the other hand, Op(~,j) is a j — 1 = 2-path of type

RIS
AN

mo <—‘ﬁ2

o If j =4, we have
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so non-degenerate sequences as above must be of the following types:
N3 — Mg — N3 — Ny
N3 — N3z — My — Ny
N3 — N3 — Ny — Ny
Ny — Ny = Ny — Ny
Nz — Ny = My — Ny
We leave a depiction of the j — 1 = 3-path OpM(~, j) to the reader.

An examination of Example 5.2.20 is sufficient to reach the following An-
satz:

Construction 5.2.21. Let (7v,5) € P and let n > 0 be a natural number.
With each sequence a = (a” > --- > a") € Ny(P}) where 1 <i < j < /(<
k + 2, we can associate the map

A:[n] = [j —1],
t—j—1—(ay,_;—1)
in A, where
N; == Nyt
is defined with respect to of = (of < --- < of) as in Lemma 5.2.15. Since

OpMN(v,j) € BO(m);_1, we may pull it back along A for any o € N,, =
N,.(F;}) to obtain, with a slight abuse of notation, a map

OpN(v,7): N,y = BO(m),,
a— A" OpN(y, j).

Lemma 5.2.22. For 1 <i < j </{ <k+2, the map OpN(v,j): No(P}) —
BO(m)e of Construction 5.2.21 is an co-functor.

PROOF. We must first prove that the map A: [n] — [j — 1] of Construc-
tion 5.2.21 is well-defined and monotone. Since NV, is the smallest index such
that afy, > j (if it exists), we have afy,_, < j, and so A(t) = j — ofy,_, > 0.
Moreover, ofy,_; > 1 since of is a sequence of numbers that starts at i > 1,
hence A(t) < j7 — 1. We can never have N; = 1 since i < j < (. As for
monotonicity, we must show ofy,_; > aﬁ(,ﬁ_l for t <t in [n]. That o > o
means o C o as posets. We have oly,_, = max{z € af : 2 < j} and since
{rca 2 <j}C{reca: x <}, weobtain

ag,t/fl —max{z €a’ :x<j}<max{reo iz <j}= aly, 1.
Incidentally, this also shows N; < Ny: there can only be more indices % in
{1,...,ny} where ! is at most j, not fewer.

Finally, observe that the map ¢: N,, — Homa([n],[j —1]), a = ¢(a) = A

is manifestly simplicial, and therefore so is Op91(y, 7). Indeed, let 6: [n'] — [n]
be a poset map. Then (5*a)* = a’® for t € [n'], so

o)1) = (8 a)ly,. 1 —L=ay’ o = 1=A(5(1) = 6" (6(a))(1).
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Remark 5.2.23. Construction 5.2.21 immediately gives
Opm(r%j)’t = m(/77 j)|a’§\,t71—17
since (cf. [52, 003M]) Op reverses the operation j — 1—. Consequently,

Vo = Opm(’yujﬂa
for o = (a1 < -+ < @) in the situation of Lemma 5.2.15.

Lemma 5.2.24. The maps of Lemma 5.2.22 lift to a function
OpM: Pit — [Path[L, ...,k +2], B¥O] .

PRrOOF. For pairs i,¢ € {1,...,k + 2} that do not satisfy 1 < i < j <
¢ < k+2, welet OpM(v,5): No(P;}) — BO, (recall Notation 5.1.5) be the
constant map to the zero vector space. This defines Op1(~, j) on all morphism
spaces, so it remains to verify functoriality, which holds for trivial reasons: if
a:i—{and B: ¢ — ¢, then either

e OpN(v,j)(a) # 0, in which case OpN(~,)(8) = 0 since £, > j,
hence OpN(y,7)(B U a) = 0 & OpN(y,j)(a) = OpMN(y,j)(a), which
holds since Nu- = Ngua)+ follows immediately from the definition.
Appending S to the head of a does not change the first index for
which the sequence becomes larger than j;

e or OpN(v,7)(B) # 0 in which case Op(v,j)(a) = 0 since ¢ < 7,
hence OpMN(,j)(B U a) = OpN(y,5)(8) & 0 = OpN(7, j)(B), which
holds, not because Ny = N(gua)« which is not the case here, but
because [y, 1 = (8 U a)n,,,—1- Appending « to the foot of 5 does
not change the last element in the sequence before it grows larger than
7, since that element is already within f;

e or both OpM(~, j)(«) and OpN(~y, 7)(5) are zero, in which case it will
suffice to show that Op9(v,5)(FU«a) = 0 = 0& 0 as well. This is
clear if 7,0, ¢' < jorif i,¢,/' > j. But i,/ < j and ¢,/ > j cannot
coincide, so these are all the cases.

This argument applies mutatis mutandis to unions of chains of posets to show
functoriality on higher morphisms. U

Proposition 5.2.25. The functions
OpM: P2 — [Path[l, co k2] B@O}

of Lemma 5.2.2/ extend
Ugli ngl — V.

PROOF. The only overlap in dimensions < 1 is within P& C £X,. Here,
the equality of the two maps is trivial, but we include the proof for com-
pleteness. For (y,1) € P§ and so for i = 1 and ¢ = 2, we have that
Uy, 1)|ngpeny: 12 = W = N(v,j) = pry(yo) is the normal component of
(7,1). On the other hand, taking o = 12 € No(Pr3) yields the constant A =
id: [0] — [0] and so OpMN(y,1)(12) = id"OpN(y,j) = Op(pra(0)) = pra(ro)
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since Op is the identity on vertices. (The compatibility of the vertex values
with any extension of U<, in higher dimensions was noted in Remark 5.2.23.)

Now, for £ > 1, let S be a simplicial operator of type S = ¥* for
k4 1] = [1]

in A. For (y,1) € P$ again, assume that S(vy,1) € PS C EXyyy is also
vertical. This amounts assuming that ¥ is surjective. In this situation, Op
and U<; may be compared, and we must show that

def

U§1(5(% 1))|Path[1 ..... k+2] = SU(% 1)|Path[1 ,,,,, k+2] = OPW(S(% 1)) (5-2-26)
where the LHS is the restriction to Path[l, ...,k + 2] C Path[k + 2] of
SU(v,1): Path[k + 2] — B®O0.

77777

and b’s to the exit index 1 according to S. The underlying simplex map X is
determined by a unique index

626{1,...,/{3—}-1}

such that ¥(z) = 0 for z < ex—1 and X(z) = 1 for z > eyx. It is straightforward
to see that
Ijsl = éy,

SO
Op(S(7,1)) = Oppry(STlo,...ex—1) = Pra(Op(SYlo,....e5-1)) € BO(mM) ey 1.
But

and Opsy = s9_oOp = s9Op in dimension 0, and pr, commutes with Op as
well as with any simplicial operator, so we have

= praA”(s0)™ ' Opyo = praA™(s0)™ 0
= Pry(s0)" 70 = (50)"Prao0
for a € N,,(P7}) and 1 <i < ex < ¢ < k+2, and (the n-fold degenerate) zero
otherwise.
On the other hand, ¥: [k + 1] — [1] induces a map
Yy k+2] = [2]

defined by
¥1(0) =0, and X(i)=%2(—-1)+1
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for 1 <4 < k+2. Along the under-oo-category identifications V7 = (B¥0),1,
we have that S(U(v, 1)) € V7, corresponds to
S+1(U(y, 1)) = X3,(U(7,1))

in (B®O)g42 (see Lemma 4.3.4), where we identified U(~, 1) with the corres-
ponding element

U(v,1): Path[2] - B0 in (B®0)s,.
The restriction of the induced map ¥ : Path[k+2] — Path[2] to Path[1, ... k+
1] factors through Path[1,2] C Path[2] by construction and defines the LHS of
(5.2.26) as the composition

Y|

Path[l,..., k + 2] — Path[1, 2] Y6, geo,

Let now ex, be as above, so that ex + 1 € {2,...,k + 2} fulfills the analogous
function for the restriction ¥,;|: we have ¥ 4(z) = 1 for 1 < 2z < ey =
ex +1—1and X(z) = 2 for x > ex + 1. Suppose, then, that 1 < i < ¢ <
k+ 2. We have SU(v,1): 4, — U(v,1)(id;) = idgeo = 0 € BO if ¥,4(i) =
Y(0) = 1, ie., if 4,0 < ex. Similarly, SU(v,1): 4,£ — U(y,1)(idy) = 0
if $,1(1) = 241(0) = 2, ie., if i,0 > ex. If, however, i < ex and > ey,
then SU(v,1): 4,0 — U(v,1)(12) = W = pry(y0). In both cases, the result
coincides with the value of the RHS of (5.2.26).

Generalising this observation to higher dimensions is straightforward: let
a € No(P7}). Tfi,l < exoril > ex then SU(v,1): a = (s0)"0, and if
i <eyand { > ey, then SU(v,1): a+— (S0)"pryo- d

5.2.4. The induction step. Let us write

gXSk—l—l = (‘L:XSIH-I ~N SXSk) U EXSk

for the simplicial subset of £X generated by £X < together with the non-
degenerate exit (k + 1)-paths in P2 C EX 41 (cf. Remark 5.1.18), and let us
assume a map

ngi ngk — V(_>
is given which satisfies
and
A5 OUk(7,5) = Usi(, 1) lpainis,..2) = OPIN(7, j) (5.2.28)

for all (v,7) € P2 C (EX<ki1)s11, with OpDt defined as in Construction 5.2.21.
Proposition 5.2.25 states exactly that this equality holds in the base case k = 1.
Moreover, this is consistent by Lemma 5.2.15: as noted there, the condition
that U<, extend U<, fixes the spaces V;, for 1 <7 < ¢ < k + 2 through the
induced restrictions to the subcategories Path|0, «, 5] C Path[k 4 2], and these
spaces coincide with the values of Opt wherever they overlap.

There is a final inductive assumption which we will formulate and justify
in the proof of Proposition 5.2.39; see immediately after (5.2.49). It involves a
construction that becomes necessary for the first time within said proof, which
is why we chose to formulate it therein.
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Now, having fixed U<x(7, j) on every B®O-face, i.e., on every proper sim-
plicial subcategory of Path[k + 2], we have in particular fixed it on every
hom-space Hompagnr12)(%, ¢) for (i,€) # (0,k + 2).

It remains then to specify it on all of Hompyne49)(0, k+2) = N.P& hio- The
initial object of P&%H is [k +2] =0,...,k+ 2, and its final object is 0, k + 2.
All arrows with domain [k + 2] are composite (recall Definition 5.1.6) except
for the arrow [k + 2] > 0,k + 2, so this is the only 1-morphism of Path[k + 2]
whose image is not determined by the inductive hypothesis. For instance,
01234 > 014 = (01 > 01) U (1234 > 14), and the value of both factors is
determined already by U<j. Generally, any 1-morphism [k + 2] > [k + 2] \
with 8 C {1,...,k + 1} a proper subset is determined by functoriality in the
same way, as can be seen by decomposing the target nontrivially and using
the initiality of both factors in the corresponding decomposition of [k + 2].
Namely, take § € {1,...,k+ 1} \ 3, and write

E+2]N8=1(0,....0N([k+2]~BHU®,....k+2N([k+2]\ ) = B} UL
Then

E+2]N8>0,k+2=(0,...,0 > 57 )U(9,....k+2>5%).

Consequently, the images of all higher morphisms of whom [k+2] > 0,k + 2
is a side are likewise undetermined; since we are mapping from the nerve of
Pykyo, this means (the images of the) sequences with long edge [k + 2] >
0,k 4 2. By the long edge of an n-chain S € N,,, n > 1, we mean its pullback
along [1] < [n], 0 — 0; 1 — n. Clearly, if [k + 2] > 0,k + 2 is an edge of S,
then it is also its long edge since 0, k + 2 is final and [k + 2] is initial.

It will therefore suffice to provide construct images for the simplices of
No(Pyrso) with long edge [k + 2] > 0,k + 2, as well as an image for this 1-
morphism itself. We have seen that the image of the latter need obey no other
condition. Our strategy will be to generalise the idea of the decomposition
in (5.2.12). To this end, we will first identify where exactly the path v €
BO(n + m)4 fits in the image of the (k + 1)-cube Py k0.

Let us write 9, == (7, )|+, as in Example 5.2.20.

Lemma 5.2.29. In the situation of Lemma 5.2.15, let a = (o; < -+ < ay,)
be a sequence within [1,k + 2|. Then we have

moe _1—1 ¥ (7aj)‘a1—17 N > 17
Upp(0,0) =4, ™" B
(Vs Dlas-1, N =1
Proor. This follows immediately from Lemma 5.2.15 and Proposition 5.2.25
after decomposing the space as Vo = Vo @ Voo, - U

Corollary 5.2.30. In the situation of Lemma 5.2.15, for 0 < i < k + 2, we
have

Uy.5)(0,4, k +2) = 7]i1,
and
U(%j) (O, k‘ ‘|— 2) = ’Y’k«#l-
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PrROOF. The second equality is clear. Now, Lemma 5.2.29 yields

; ‘ﬂi, P " i1, S .
U(w‘)(O,z,_M):{ 1® (1, 5)li-1, 1<

(v, 9)li-1, 1>
If © < j, then (v, 7)];—1 is low, so 7|1 = M1 ® 7 (v|i~1), and if ¢ > j, then
(7, 7)]i—1 is upper, so v|;—1 = (7,7)|i—1 (recall that we suppress ¢). O

Now, all of No(Fg},,) is to map to BO(n +m) = Sing, BO(n + m) under
U(7, 7). Therefore, by the adjunction between | —| and Sing,, this is equivalent
to mapping out of |N,| to the space BO(n + m) instead. We will specify the
‘location’ of ~y inside (the image of) N, by means of an embedding A1 — |N,|.

Construction 5.2.31. The vertices featuring in Corollary 5.2.30 specify a
(topological) (k+1)-simplex within |N,|. Namely, since, by Proposition 5.2.18,
IN,| is canonically homeomorphic to the (k4 1)-cube, we may define

Vi AR NG|
to be (i.e., map homeomorphically onto) the subset of |[N,| given by the convex
hull of the vertices {04,k +2:0 <i < k+2}U{0,k + 2} C [N,| = [0, 1]*F+1),
This is indeed a topological (k + 1)-simplex: shifting and rotating the cube
so that the (image under this homeomorphism of) 0,k + 2 lies at the origin,
it is easily checked (vis-a-vis the proof of Proposition 5.2.18, keeping in mind
Remark 5.2.19) that the points (given by the images of) 0,1, k + 2 give exactly
the unit vectors on the coordinate axes.

Writing

A =N\ V
for the closure within [0, 1]***1 of the complement, we obtain the decompos-
ition

INo| = AUy V (5.2.32)
where the common boundary 0 is the convex hull of the vertices {0,4, k + 2 :
0<i<k+2}.

Example 5.2.33. Consider an exit 3-path (v, 3) € P of index 3:
K

Wi, @ V1

Wo @ Vo Wy @ Vs

The diagram depicts the underlying path v € BO(n + m)s. The edges of
U(v,3) € B#O, are given, due to (5.2.27), as follows:

01— Vg, 02— Vi, 03— Vs, 04— K,
14— Wy, 24— Wy, 34— W,
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and the remaining edges are zero. Now, the image of the 3-cube P0°7 v

01234 —— 0124

Saey

0234 — 024

| wu—|—o
e /

034 > 04

under U(~, j) looks as follows:

Wy @ Vo Twi2®id ——— Wi @ Vg
— —
id®yvor id®yvor
' '
W2 > Vi id;vlu@id—) Wl % ‘/1 7‘7V101@id
id®yviz Wy @® Vg Yo | @1d ——— Wy @ Vp
- .
. d
l id®vyvo2 o Y0 -
Wy @ Vy Vo2 > K

Painting in the outer-left concatenation chosen to be the image of 01234 > 04
according to the discussion in Section 5.2.2 (in green) and the (edges of the)
‘lower’ tetrahedron given by v € BOj itself (in blue), we see that

Wy @V > Wi eV

— | —

Wy Vi » Wi eV

T~
/ TWo1PYvol
~

Ywi2bYvi2

W2 S%) \% ? WO S¥ %7
B —
%OQ@VVOQ /
/

Wy Va = K

homotopy-commutes by inspection. In terms of Construction 5.2.31, the 3-
simplex with the blue/cyan edges geometrically-realises to V, and the cube

with V cut off gives A. The 2-dimensional instantiation of this idea is depicted
in (5.2.12).

As Example 5.2.33 suggests, the next step in our strategy is to define a
new poset Pg%:z such that the full subposet I, \ {0,k + 2} of the original
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poset given by removing its final object is embedded into it,

Fohpo > {0k +2} C P, (5.2.34)
and such that we have a homeomorphism
’N- (POPAN =A. (5.2.35)
0,k+2

Definition 5.2.36. By POO%F\2 we denote the poset whose objects are the same

as those of P}, {0, k + 2}, and whose arrows are those of the latter together
with the new primitive arrows

0,ik+2—0,0k+2
whenever 0 < ¢ < ¢ < k + 2.

Lemma 5.2.37. Definition 5.2.56 satisfies (5.2.34) and (5.2.35).

ProOOF. That (5.2.34) is satisfied is clear by the construction. Let us ob-
serve now that (5.2.34) lifts as in the diagram

INe (Pifs ~ {0+ 21) —— N, (P)|

0,k+2
\[ e

[O, 1] X (k+1)

to an embedding into the (k + 1)-cube. Indeed, any topological simplex in
‘N . (%) ‘ can be sent to the convex hull of the images of its vertices within
[0, 1]*®+1) " This makes the diagram above commute, since the map

INe (Poh o~ {0,k +2})] < [0, 1"+

is given by restricting [N, (Ppxi2)| < [0, 1]**+Y and the latter is easily seen
(by examining the proof of Proposition 5.2.18) to be itself defined by sending
simplices to the convex hulls of the images of their vertices. (The images of
the vertices are fixed explicitly in said proof.)

Note now that the intersection of the image A of ‘N. (P(;’%:Q)‘ and V is

given exactly by the convex hull of {0,7,k+2 : 0 < i < k + 2}, which is by
construction the image of the geometric realisation of the k-simplex

0,,k+2—-0,2k+2—---—=0,k+1,k+2)

from N, (Pgh). Therefore, we can glue with ¥ and stay within the cube:
AUy V C [0, 1]<E+D),
[t remains to show the reverse inclusion, which will imply that ﬁ, and therefore

‘N. <P°p/\) , are homeomorphic to A.
0,k +2
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The (k + 1)-cube itself being the convex hull of its corners, it is equal to
the convex hull of the union of A and V. By [66, Theorem 3.3, then,” it is
the union of all convex combinations of these two sets:

[0, 1]+ = U <)\1£ + AQV)
Ai>0,
A+do=1
This means that it suffices to show that given points x € A and y € V, the
line segment L connecting x and y lies within AUV. This is a straightforward
application of the intermediate value theorem, as we will now show.

Shifting and rotating the cube such that the image 0, k + 2 is at the origin
and the imagei= (0,...,0,1,0,...,0) € R* of 0,4, k + 2 is the 7’th unit vec-
tor among the k+1 coordinate axes (cf. the discussion in Construction 5.2.31),
we place L as well as all of the (k + 1)-cube inside the non-negative orthant of
R"1. We may assume that neither point lies on the common boundary

k+1
0 = {ZA,&:ZAF 1},
=1

since otherwise L lies within (at least) one of the two sets by their convexity,
and we are done. Now, ¥ is the convex hull of {0,i}**]! so

k+1

y=>Y M with Y N\ <L
=1

On the other hand, A is the convex hull of
k+1
{Z ik s € 40,13, (ua)H £ 0X<k+1>}
i=1

where there exist evidently 25+ —1 possibilities for pn = (p;)¥5! € {0, 1}k
{consto}. We obtain

r= YN Y, i
je{l,..2k+1 -1} d€{l,...k+1}
=1 w]€{0,1}
2 Mgzl
and, writing A} := D ;cqq  or+1_gy Ajpt, We have
2 =1
k+1

r=Y MNi with Y X#1
=1 7

Mt is not true in general that the convex hull of a collection of points in euclidean space is
the union of the convex hulls of two subsets that partition the collection with non-empty
intersection.
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due to z ¢ O by assumption. But since >3, 4/ > 1 and 3.\, = 1, we have
YAl > 1 in any case, so we must have

Z)\g>1

L — R,

Zl/iif—)]_—zyi

is negative at x and positive at y, and so is zero at some Z € L. But then
Z € 0, so, writing

Thus, the continuous function

L=L,zUz Lz,
where L,z is the line segment connecting the points o and 3, we have, since
Z € &mv, that L,z € Vand Lz, C A by convexity, and therefore L C AUV.
This implies [0, 1]*®+) C AUV, as desired. O

We summarise the resulting strategy of proof for Theorem 5.1.3 in the
following

Corollary 5.2.38. Providing, for each (v,j) € P2 C EXpp1 ~ EX<p, an
oo-functor

N. (T) — BO(n +m),

O
0,512
whose

o restriction to N (Pojri2) ~ {0,k +2} agrees with the restriction of
U<y, and whose

o value on (0,15 +2 0,2k +2 == 0.k +1,k+2) € Ny (B
is di+1(7y) € BO(n +m)y

yields an extension U<pyr: EXp1 = V7 of Ugy.

PROOF. First, let us summarise what we have already proved. Given such
an exit path (v, j), it suffices, by the discussion at the beginning of this section,
to provide an extension of U< on N, (PSIZH). Using the bijection

Homgser (Na (P5h5) , Sing,BO(n +m)) = Homre, (Na|, BO(n + m)) ,

and combining Lemma 5.2.37 with (5.2.32) from Construction 5.2.31, we see
that it suffices to provide two maps of type

Sop
)N, (P07ﬂ\2> ) — BO(n +m)
V =AM 5 BO(n 4 m)
such that

e they agree on 0 = AF the convex hull of {0,4,k+2 : 0 < i <
k + 2}, which is the intersection within the unit (k + 1)-cube of the
two domains; and

o they extend Uy.
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Now, we can define ¥V to map to v € BO(n + m)p; ;1. Since V =2 AR g
given by identifying 0,7,k + 2 with ¢ — 1 and 0,k + 2 with k£ + 1, we see that

the sequence (O, Lk+2—---—=0k+1,k+ 2) € Ny (P0m> is exactly the

(k + 1)’st face, so its value is dg,17y by construction.

The statement will follow once we show that v: V — BO(n + m) it-
self is compatible with U<,. The only definitional overlap is at the vertices
and those edges that are of type 0,7,k +2 > 0,k + 2, since the other edges
0,i,k+2 — 0,0,k+2, i < {, are not in P(()),IZH' This verifies that there are
no overlapping higher simplices. Now, Corollary 5.2.30 states exactly that
the values of the vertices agree. The value of U<y on the edges is fixed by
U<k|<1 = Uxy, the inductive hypothesis (5.2.27). Here, we see that there is
agreement by construction: setting 7' := (A{i — 1,k + 1} — A[k + 1])" v, we
apply the definition from Section 5.2.1: U<(v/,1)(012 > 02) = . O

NOTATION. A = A, = N, (Pom)ﬁ:: (0,Lk+2— = 0k+1k+2) ¢
As.

By Corollary 5.2.38, the following concludes the proof of Theorem 5.1.3.

Proposition 5.2.39. For each (7, j) € PR C EXpy1 ~ EX <y, there exists an
oo-functor

U%: A — BO(n +m)
that extends U<y, and is such that U*(9) = dy.1(7).

PrOOF. All simplices in A that have at most one vertex from 0 are already
determined by U< and functoriality, as noted at the beginning of this section.
Consequently, the non-degenerate (k+ 1)-simplices of A are exactly those that
possess non-degenerate edges in 0. Setting U2(9) = dj11(7), we will exhibit
natural fillers for these, generalising the observations in Section 5.2.2. Let

0,0 k+2>--->0,0",k+2>0 81, k+2—= - =0,Brss k+2
(5.2.40)

be an element of A, ,, which (the element) we will denote by X, where, with
a slight abuse of notation,

[Lk+1]2a° 220" 2By <+ < frus

with non-empty sequences o = (a;); , and elements f3;, s > 1. Observe that
if Ny =1, then also N_» =1 for all ¢/ > i. We have o < --- < af due to the

subset inclusions, and therefore
af <o <af < Bur < < B, (5.2.41)

Let, then, I € {—1,0,...,r + s} be the the smallest index such that ol > j
or else B > j for all I’ > I + 1. The adverb ‘else’ is warranted by (5.2.41).
If the former, this implies that N = 1, and so of > j, for all I’ > I. Now

Lemma 5.2.29 and Corollary 5.2.30 imply that (the 1l-skeleton of) U@ H(X)
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must be of type
ma?v 1—1 D (77j)|a?—1 — mo‘{vf1_1 S¥ ('7,j)|a{_1 —
(’77 )’a{+1—1 i (7aj)|o¢’£—1 —
7|Br+1—1 — ’)/|67"+s—1‘

If I = —1, then o — 1 > j for all i > 0 and so every (v, )
We set

oi—1 18 upper.

U, (X) =Z'(7) (5.2.42)

using the map

i r+s]— k41

. a;—1, 1 <r
i ,
Gi—1, r+1<i<r+s
which is monotone by (5.2.41
such case occurs when X =

UL, (9) = dis (7).
If I > 0, then the construction is naturally partitioned into cases depending
n (v,7j). Since k + 1 is the final vertex, dj17y is either low or vertical.
It is low iff j = k+1, in which case [ = r+s. This implies that U k+1)(X)

has no terms of type (7, 7)., and that v|g,_1 = MNg,—1 & 7(7|g-1) (as noted in
the proof of Corollary 5.2.30). Similarly, we have (v, k + 1)|at_1 = m(V|at_1)-

1), and observe that it is of the desired type. One
0 (with r = —1 and s = k + 1) and reproduces

In sum, U (k1) (X) 18 to be of type

ma(])\,7171 @ 7]—(’)/|O£(1)71) — = maN 1_1 @ 7T(’y|a’i‘_1> —

mﬁr+1_1 @ 7T(/Y|ﬁ'r+1_1) _> T % mﬁr«ks_l @ 7T(’7|/B'r+s_1)'
Let us write
5T ak =1, 0<T<r

br—1, r+1<T<r+s.
We claim that N

U('y,k—‘rl) (X) = FW D FV (5243)
does the job, where, first,

Ly : A" — BO(m)

(to,...,tHs)»—ﬂ)’t(ZtT,...,ZtT>

§T=0 §T=k
where an empty sum is understood to give 0. In other words, ¢ is a summand
of (and only of) entry §7. We observe that 'y, is well-defined: since the exit
index in this case is j = £+ 1, D is a k-path. Immediately from the definition
of I, we have 67 = ok, | —1 < j—1 =k for 0 < T < r, and similarly
M =Br—1<j—1=kforr+1<T <r+s, sothat the coordinate
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expression makes sense. Finally, the sum of all entries is equal to TTJ;SO tr=1
since, by construction, every tr appears therein exactly once.
Secondly for (5.2.43), we set

FV = E*W(dk+17)
al —1, i<r
Bi—1, r+1<i<r+s

using the map =Z: [r + s] — [k], ¢ — { as with

(5.2.42) except that the target is different.

The compatibility of (5.2.43) with the inductive assumption (5.2.27) holds
trivially. As for (5.2.28), we may assume, without loss of generality, that
al =i for some arbitrary but fixed i € {1,...,5} = {1,...,k+ 1} for all T,
and it suffices to consider the restriction of X along A{0,...,r} — Ar + s,
since for the range from r + 1 to r + s we would have to assume Sy = i for all
T as well, whence that range is, for our purposes in this case, degenerate. We
may now decompose as

Xlop = (@O,k+22---2ar,k+2)uy

with the left factor in N, (RO,S +2), so that compatibility comes into question.

Let, then, T" € [r| and observe that
FW|T(1> = Fw(o, ey 1, e ,O) = ‘ﬁ|a%_1,1(1) = Op‘)’t]T(l),

by Remark 5.2.23, where in the second term 1 appears in entry 7.° More
generally, given (to,...,t,) € A", note that ak_, > ok | for T < T" as we
know from the proof of Lemma 5.2.22, and so

Cwlo..r(to,- . tr) =Tw(to, ..., 6, 0,...,0)

7._.7(%()1\]71_1 Z tT, ey Z tT

aj_=ah_, aj_=od_,
= Op‘)’t]o,m,r(to, e 7tr)

directly by the definition of the latter in Construction 5.2.21 and by Re-
mark 5.2.23, since a poset map ¢: [K] — [L] is mapped under geometric
realisation (see Chapter 2) to the map

(to,...,tK)H Z try..., Z tr
H(T)=0

(T)=L

We must also check compatibility with the condition U2(9) = dpy1(7),
but this is straightforward. The relevant range is from r + 1 to r 4+ s, and here
we observe that

Fer+1,...,r+s<tr+17 o e 7tr+s) = FW(07 QR 707 tr+17 s ;tTJrs)

- m|ﬁr+1_1v---vﬁr+s—1(tT‘-l-l? s 7tr+s)

8This 1 is the one of A? = {1} C R..
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since f3, is non-decreasing. This implies
FW D FV m/BT+1 1,....0r4s—1 D 7T-(dk"f‘l,y)|67"+l 1,....Br4s—1
- dk+17’ﬁr+1*1 ~~~~~ Bris—1

since this face is low in this case by assumption.
If, lastly, dyy1(y) is vertical, or equivalently j < k which covers the case

0<I<n+m,then
di1(7,7) = (dr+17, J) (5.2.44)
since k 4+ 1 > j implies b; 41 = j. We first claim that
Udk+1(%j)(0, OéT, ]C + 1), OéZ; S I{J,
Udkﬂ(%j)(o, OzT), CKZ; =k+1
Indeed, recall that by (5.2.16) from the proof of Lemma 5.2.15 we have
Uy (6,4) = Uy (i, )

whenever 1 < i < j < (,¢ <k + 2. This immediately implies the claim since
by (5.2.44) the exit indices on both sides coincide. Namely, the latter implies

N , _ NOZT,]C+17 OZZ-'T S k:
o kt2 NaT, 7'T =k+1

U (0,07 k+2) = { (5.2.45)

since the first index on either side that exceeds j < k is not affected by whether
the full sequence ends with k+ 1 or k + 2. Therefore, if N (which we can thus
employ unambiguously) is 1, then, by Lemma 5.2.29, (5.2.45) becomes

(77‘7.)|041T71 = (dk+1(77j))’a{fl = (dk+177j>’a1T71 (5246)
which holds by simpliciality since al — 1 < k as o C [1,k + 1], whence
al' —1 € Im(0g41). If N > 1, then again using Lemma 5.2.29 together with
(5.2.46) we see that (5.2.45) is tantamount to
1) = m(dk+1<77j))(aT7k + 1N—1 - 1)7 arT < k

N(dir1(7, ) (o — 1), ay, =k+1.

which holds similarly. In the same way we obtain
Ug (7.0, 80,k +1), Br <k
Uit (v) (M)a Br=k+1
using Corollary 5.2.30, which is to say, as a special case of the above.
Now, since d}j:l = df%o by Lemma 4.3.4, the inductive hypothesis provides
Uc<i(diy1(v,7)): Path[k + 1] — B®O
and so in particular a map

Ui (drs1(7, 7)) lHom(ok+1) * No (Pogyr) = BO(n +m). (5.2.48)

. T
m(77‘7)(a 7k + 2N71 -

Uy,(0, Br, k +2) = { (5.2.47)
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Consider the projection

. p%p_ _, popP

0,542 0k11’
0 E+1 n <k
O, k42 {o@it s ns
= I =k +1

with a = (ay < -+ < ), n > 0, within [1, & + 1], where n = 0 is understood
to give the empty sequence. It is clearly functorial. Using the adjunction
between geometric realisation and the singular chains functor one more time,
we can write (5.2.48) as a continuous map of type |N, (Pohst) | = BO(n+m),
and, applying Lemma 5.2.37, obtain the restriction

N (BE)| = NG (BRa) | = BO(n + m),

Finally, un-applying the adjunction yields the further-restricted oo-functor
Uskldii(7,9)): No (B2 ) = BO(n + m).
We can thus compose and obtain
U (s (7, 7)): A — N (P ) — BO(n +m)
and consequently set
UL (X) = U <i(dia (7, 5)) (X). (5.2.49)

The equalities (5.2.45) and (5.2.47) state precisely that (5.2.49) is compatible
with ng'

On the other hand, we may append the compatibility of (5.2.43) and U

to the inductive hypothesis. Namely, we assume that the map induced (by
repeated use of the adjunction between geometric realisation and the singular

chains functor) by Uy, itself on N, (POp ) for all k' < k —1, is given by

(5.2.43) on any exit path whose (k' + 1)-face is low.

This assumption is justified since it holds in the base case k = 1, as we will
now observe. The case of interest is where the exit index is 7 = 2, and there
we have given the filler of (5.2.14), which depicts exactly ?Og, by I' @ so(yv)
and we see that

[(to, t1,t2) = yw (t1, 1 — t1) = yw(ts, to + t2) = Dw(to, 1, t2).

) = w(
Similarly, on X = (0123 Z 013 — 023) we have =: [r+s] = [0+2] — [1] maps

0—al=1=0,1~ _:0 2+ By —1 =1, and so = = gy. Thus

80("}/\/) = E*ﬂ'(dg")/) = Fv.

Consequently, (5.2.49) itself is also compatible with (5.2.43) by virtue of
being compatible with U< by the inductive assumption. U

The proof of Proposition 5.2.39 cannot be read off from the examples in
Section 5.2.2 and Example 5.2.33 alone. Let us therefore give two final ex-
amples that illustrate the novel cases treated in that proof.
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Example 5.2.50. Let us consider a case where dj 17 is vertical. Suppose
k =2 and j = 2, so that v (as visualised within the 3-cylinder) is of type

K
\K/
Wye WV,

7

Wo @ W
where we omitted the edge Wy @ Vo) — K'. The face dj 17 is
Wiewv

SR

W()EBVE) s K

The image of FyY under U, with v painted in blue into V within the geometric
realisation, is then of type

Wia Wy > Wi @ W

/

A path X in N, (@) as in (5.2.40) that is novel is given, for instance, by

0124 > 024 — 034, whose image under U, as can be read off the cube, is to

be of type

The filler thereof provided by the proof is exhibited by first factoring X
through the projection II, which yields TI(X) = (0123 — 023 — 03), which
by U(ds(v,2)) is mapped to a 2-simplex of type

Wie Wi

N

Wl@% s K
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provided exactly by the left triangle in (5.2.11) in the case j = 2 = by 3.

Example 5.2.51. In the situation of Example 5.2.33, i.e., with £k = 2 and
j = 3 so that d17v is low, a novel path X in N, <@> as in (5.2.40) is given,

type
Wod Vo >Wi1 VoW1V, > Wy d Vs, (5.2.52)

We read off
Ly (to, t1, ta, ts) = yw (0,81 + ta, to + t3)
where the normal path vy is of type

Wi
Wo > Wa

It is a direct check to see that I'y fills the normal component of (5.2.52).

We will conclude the present chapter with a construction promised in Re-
mark 4.3.14.

Remark 5.2.53. Let I': Path[k+ 1] — B®O be a k-simplex of V7, and V as
in Construction 5.2.31. Then the rule’
Vi© = (BOX )
I'—I(V),

restricts on the core V= C V7 to an inverse to the map V: BOY — V77
from the proof of Theorem 4.3.11. In contrast to the putative rule ¥~! in

Remark 4.3.14, this is functorial: V = VAR |N. (P&I;HH is the convex
hull of the corners 0,4,k + 1 and 0,k + 1 within the k-cube (along Propos-
ition 5.2.18), so evidently (dfflof‘)(vk_l) = diF(Vk) and (sfflof‘)(vkﬂ)
SiHF(Vk) hold for i € {0,...,k}, which by Lemma 4.3.4 gives simpliciality.

Remark 5.2.54. None of the results and constructions in this section depends
on the properties of infinite Grassmannians. Conseqently, for any topological
monoid M as in Corollary 4.3.15, assume that its operation ® is a cofibra-
tion, and that M = [[ M; over some index set. Then we may consider two
‘strata’ M;, My and the restricted operation ©: My x My — M;,,, giving
the linked space (M; <~ M; x My — M;,,). Then the unpacking map gives a
fully-faithful®® co-functor

EX (M, + My x My — M;,,) — */N*(BM),

12
9where we use the restriction I': Hompgink4+1](0,k + 1) = N, (Pg‘,z“) — BOfP, take
the corresponding continous map
Vi AF — N,|

1035 noted in the proof of Proposition 6.3.13.

N, (P&iH)‘ — BOgP, and finally pull it back along
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giving a particularly simple equivalent description of the full sub-co-categories
of the ‘quasi-deloop-and-loop’ of (M, ®) generated by depth-1 pairs.






CHAPTER 6
Cartesian structures

DEFINITION. A linked space & = <M SLS N) is called a linked mani-
fold if

e M, L, and N are smooth manifolds,
e 7 is a fibre bundle,! and
e , is a closed embedding.

6.1. Linked tangent bundles

We start by observing a fact, Lemma 6.1.1, that will let us give the tangent
bundle of a linked manifold by means of unstratified data. This formalises an
informal discussion present in [7, §2.1.4] in the conically-smooth setting.

From now on, we assume all manifolds Hausdorff and paracompact, so that
vector sub-bundles split.

Let v: L — N be a clossed embedding of smooth manifolds, and £ — N a
rank-(n + m) vector bundle classified by E: N — BO(n + m), equipped with
the inner product induced by that on the separable Hilbert space H = R*
used to construct the Grassmannians BO(k) = Gry(H). Let further Ey be a
rank-n vector sub-bundle of (*E, classified by Ey: L — BO(n). The pullback
bundle itself is classified by (*E: L < N — BO(n +m).

The normal bundle Fy C (*F, classified by Fy: L — BO(m), satisfies
Ey & Eft = *E. 1t is classical that the Whitney sum is classified as follows:
Consider the isomorphism

o> HOH=H
given by sending, with respect to a fixed basis of H indexed over N, the
first copy to odd coordinates and the second copy to even coordinates. The
(abstract) direct sum precomposes with this isomorphism to give a map

EoxEy

Ey@Ey: L — Gr,(H) x Gr,,(H)

% Grpim(H @& H)

P

The classifier
@®w: L — BO(n+m)
of the Whitney sum Ey @ Ej is then homotopic to Ef & Ep.
For the construction of the tangent bundle of a linked manifold (Construction 6.1.5), it is
enough that 7 be a surjective submersion.

95
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Lemma 6.1.1. Let

e i: L — N be a closed embedding of smooth manifolds,
e [/ — N a rank-(n+m) vector bundle equipped with an inner product,
e and Ey — *E a rank-n vector sub-bundle.

Then there exists a classifier E: N — Grym(H ® H) of the isomorphism class
of E— N such that the diagram

E()><E

L ——— Gr,(H) x Gr,,(H)
[ E (6.1.2)
N

5 Gropn(H © H)
commutes.?

PROOF. Let us concatenate the homotopy @y ~ EOL@BEO constructed
above with the standard one from (*F to @y, classifying the inverse of the
bundle isomorphism Fy & Ej- & *FE given fibrewise by (v,w) — v + w, to
obtain a homotopy

h: 'E — ®&w — E()LéEo,
of maps L — BO(n + m), which sits in the commutative diagram

L —— BO(n+m)!
Y
L\[ H levo
As ¢, being a closed embedding, is a cofibration, there exists a homotopy
extension H: N — BO(n +m)! as depicted. We may now consider
E' = H;: N — BO(n+m)
and apply the inverse isomorphism ®~1': H = H @& H to obtain
®'E': N — Gr,(H® H).

On the other hand, applying ®~! to EL@EO recovers B @ Ey = @ o Ey x Ej-.
Therefore the two clasaﬁers

Ef © Eg,t"E': L — Grpy(H ® H)

coincide. O

Notation 6.1.3. We will sometimes write simply BO(k) for Gry(H®™) =
BO(k) for any countable number of copies of H, and therefore abuse notation
in diagrams of type (6.1.2).

Let now & — (M s N) be a linked manifold, with each manifold

riemannian. As above, they are all assumed paracompact, while Hausdorffness
is automatic. Given this contractible choice of metrics, we will show that there

2The point being that it doesn’t just homotopy-commute.
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is a ‘canonical’ map
T&: & — BO(n,m) (6.1.4)
of linked spaces, which we call the tangent bundle of &.

Construction 6.1.5. Since dr surjects, the induced linear dual map
(m*TM)" < (TL)",
of bundles over L, injects. Using the metrics, this gives an injection
™ TM — TL.
Composing with d¢, we have a bundle injection
7™ TM — TL — TN
over L. Let us denote the normal bundle of this injection by
N :=NyM = (7*TM)* C ,*TN.

Now, in the diagram

T TMxN

» BO(n) x BO(m
/ N ARS
TN » BO(n+m) (6.1.6)

M —_ BO(n)

the back square
L —— BO(n) x BO(m)

| !

N — BO(n+m)
commutes using Lemma 6.1.1 and Notation 6.1.3, and the front square com-
mutes trivially. This yields the span map (6.1.4).
Remark 6.1.7. Writing
N, M = (x*TM)* c TL,
we have a splitting
TL X n*TM & N M.
Similarly, writing
NyL = (TL)* C *TN,
we have a splitting
UTNZ2TLONNL Z 7" TM & N, M & NyL.
Thus
NyM =Ny M & NyL.
In practice, the bundle N is best determined in two steps via this decomposi-
tion.
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Applying £X and post-composing with U, we have the induced map
EX(G) > V7,

which is the linked version of (the classifying map of) the (conically-smooth)
constructible tangent bundle.

Example 6.1.8. If L is induced by a closed submanifold inclusion M C N
as L = S(NyM), the sphere bundle of the normal bundle (Example 3.2.16),
then L has dimension n 4+ m — 1, Ny M has rank m — 1, and NN has rank
1. More specifically, in the conically-smooth context, the link (of a pair of
strata) comes with an open embedding L x R < N, which is tantamount to
the triviality of the latter normal bundle, i.e., NyL ~ !, or, equivalently, to
a diffecomorphism L x R ~ S (NyM) x R. This R-factor incarnates the extra
E;-structure featuring in the classification of stratified locally-constant (a.k.a.
constructible) factorisation algebras on stratified spaces of type M C N.

Example 6.1.9. An even simpler situation arises when L (and &) is induced
by a boundary M = ON C N as L = M, the boundary pushed diffeomorphic-
ally into the interior N = N ~. M by following the flow of a nowhere-vanishing
inward pointing vector field along the boundary (which always exists) for a
chosen non-zero time (Example 3.2.15); we will denote this closed link embed-
ding later by ¢,.. Then N, M = 0 and NyL ~ ¢! again.

Definition 6.1.10. We call a linked manifold with M of dimension n and N
of dimension n+m constructible if L is of dimension n+m — 1, and its normal
bundle in N is trivial.

Making the linked tangent bundle (6.1.6) an on-the-nose span map may
be justified by the fact that the only real homotopy involved in (the proof of)
Lemma 6.1.1 is the classical one between (*E and Ej@FEy over L, which is
canonical in the sense that it does not depend on F or Ej. This choice con-
tains no geometric information, so it would be unwise to change the (n,m)-
Grassmannian by taking a replacement only to remain agnostic about it. Be-
sides, from a more practical point of view, the map U: EX(BO(n,m)) — V=~
is natural only for this span BO(n,m).

6.2. Adapting AFR-type structures

The oo-category of tangential structures is the over-oo-category
Catoo /V™
as per [7].* Via
U™: Cato,/ V™ — Cato /EX(BO(n, m)),

these transfer to tangential structures on linked manifolds: given &, and writ-
ing B(n,m) = U*B, we may define the space (homotopy type) of B-structures
on G to be

B-red(&) := Map 5o .m) (EX(S), Binm)) ; (6.2.1)

3See [51, §3] for the oo-category Cato, of co-categories.
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the mapping space in Cat,/EX(BO(n,m)), where the first argument uses TS
(Construction 6.1.5). Equivalently,

Bred(&) =T ((TS) Bim)) »

the homotopy-sections of (TS)" By, ) — EX(6).
Given B and (n,m), a natural question is whether

Binm) = EX(B) (6.2.2)

for a linked space 8, which would enable us to discuss stratified tangential
structures without having to refer to exit paths. We will restrict ourselves
in this work to the case where B — V7 is induced by a smooth tangential
structure by a cartesian fibration replacement, defined in Section 6.3.

The reason we consider this problem at all is that such tangential structures
are central to our considerations in Chapter 7, where we consider linked spaces
induced by bordisms with defects, equipped mostly with stable replacements
of smooth tangential structures, which are refinements of cartesian structures.
Besides applications, this is the main theoretical reason for our restriction to
cartesian structures: for arbitrary stratified tangential structures, it is not clear
how to define normal bundles, if this is at all possible: see Remark 7.7.1.

With this restriction, we give in Section 6.3 a solution to problem (6.2.2)
for smooth &, i.e., consisting of a single stratum. Then, in Section 6.4, we will
in fact see that the problem as stated is a bit too restrictive for arbitrary &.
We identify instead simply a span B of spaces that does the job just as well:
see Observation 6.4.19.

We will first discuss the simplest example. To begin with, recall that for
k € N, rank-x framings (k-framings) are expressed by the tangential structure
k: % — V7 that sends the point to k := R".

Example 6.2.3 (framings). We have
_{5X((b<—®—>*):*, n+m =k,

Hnm -
(n.m) 0, else

with

(Fgumy — EX (BO(n,m))) = EX ((@ 0 = %) — BO(n,m),* % BO(n + m)) .
This reflects the fact that a nontrivially stratified space does not admit a x-
framing: the else-statement implies that for a linked space to admit a x-framing

its bulk must be k-dimensional. The first statement implies moreover that for a

lift of TS to () < @ — ) to exist, the space must be of type & = () + ) — N)
(if non-empty), and dim N = k.

Similar considerations apply to any smooth tangential structure b: B —
V7, i.e., one that factors through BO(k) < V= < V= for some k.

Example 6.2.4. Let b be a smooth tangential structure given by a map B —
BO(k) of spaces, e.g., induced by a map G — O(k) of topological groups, or
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a rank-x bundle X — BO(k) on a space X. Then,
{8X((ZJ<—®—>B):B, n+m =k,

By =
(n.m) 0, else,

where we abbreviated Sing,(B) to B in its last occurence.

Example 6.2.5. Consider N = (N, <) with the standard order. Variframings
([7]) are given by vir: N — V=, ks k, (k < K) — (k —5 K). We read
vir(k < K) as the standard* isomorphism k@ (K — k) = K. Let us restrict vir
to depth 1 by choosing a pair n < N, i.e., consider vir|,<y: {n < N} — V7.
Then, for m = N — n, we have (cf. Corollary 3.3.3)
U (vir|pcn) > EX (¢ +— * — %) ~ A[l],
the exit path oo-category of the nontrivially-linked point. Moreover,
U*(vfr|,<n) = EX(BO(n, m))

*
|
pr — ™~ ) N
l/ \ 1
BO(n) BO(N)
Thus, a variframing on & = (M < L < N), i.e., a lift of TS to this A[1], is
a framing on M, a framing on N, and a framing on Ny M. As such, it is more

relaxed than a stable N-framing.

is EX of

—o— %

Example 6.2.6 (point defects). The choice of a point p in a smooth manifold
N of dimension n and a coordinate neighbourhood around it induce a linked
space

N, = ({p} S R AN {p}>
where the sphere is the unit sphere in coordinates. The link map of T, reads
¥ x (TS" ' & N(y)) : "' — % x BO(n),
i.e.,
ST (N N {p}): S" ' — BO(n).
A viro<,-structure on M, is a framing on N together with a framing on the

normal bundle of ¢. In this example, the latter always exists,> which is why we
will call such a configuration a trivial point defect.

Two relaxations of the tangential structure x (or of any smooth structure)
are of particular interest to us. They are termed, in increasing order of gener-
ality, the stable and solid replacements.

4Up to, of course, the choice of a pairing function N x N = N
5The normal bundles of the unit spheres are trivial.
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6.3. Cartesian replacements, I: The smooth case

For J € N, a stably-J-framed smooth manifold M of dimension n is one
with a framing on TM @ &’, J = n + j. In other words, this amounts to an
injection

TM — &’
of bundles over M whose normal bundle, defined either using a metric on ¢
or as the quotient e/ /TM, is parallelised.

More generally, a solid J-framing on M is merely an injection TM — 7.
First of all, we notice that in order to impose the parallelisability of the normal
bundle in terms of reductions or extensions of structure groups, we must first
separate it from the solid datum.

Let X be a smooth manifold equipped with a vector bundle £ — X of
rank 7, and let ' — X be another bundle, of rank R. Choosing a bundle
embedding

J

E—F
is a reduction or extension of gauge group on E in the following way. There

is naturally a normal bundle N to E such that the embedding amounts to an
isomorphism
. EdN=F.
This ® provides a filler for the diagram
BO(r) x BO(R—r)
ExN T l
X T, BO(R).
Changing our point of view slightly, consider the limit space®
X X BO(R) (BO(T’) X BO(R — 7”)) ----- > BO(?") X BO(R — 7")
| i l@ (6.3.1)
X i » BO(R)

which also admits a ‘source evaluation’ by projecting to the first factor:
evg: (BO(r) x BO(R —1))|r — BO(r).
Now, writing
(BO(r) x BO(R —7))|r = X Xpo(r) (BO(r) x BO(R —r)), (6.3.2)

the choice of ® can be expressed as follows:

6For the moment, we disregard the appropriate homotopy versions of such limits in order to
ease notation; in terms of the tangential structure, this amounts to disregarding the choice
of bundle isomorphism. Homotopy limits will be reincorporated into this account of their
own accord below.
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Definition 6.3.3. A solid F-structure or -reduction on E (or on X when
E =TX) of is a lift of the form

(BO(r) x BO(R —71))|r
evo
X —LF _, BO®)
We call R the total rank of the solid structure.

The normal bundle itself can be recovered from such a lift by projecting it
to the second factor:

N: X — (BO(r) x BO(R—r1))|p = BO(R — ).

Thus, a further, simultaneous reduction on N can be implemented using this
projection: if N is to have (B — BO(R — r))-structure, then we may consider
the iterated fibre product

(BO(r) x BO(R — 1)|r Xpo(rr B -——= (BO(r) x BO(R —r))|r

B » BO(R —r)

(6.3.4)

and, writing
(BO(r) x BO(R —1))|(r,B) = (BO(r) x BO(R —r))|r XBo(r-r) B, (6.3.5)
ask for reductions of the following form:
Definition 6.3.6. A solid (F, B)-structure on E (or on X when E = TX) is
a lift of the form
(BO(r) x BO(R —1))|(r,p)

R
levo

X E » BO(r)

When B = R —r, this is a stable F-structure. We call B — BO(R — ), or
B, the normal structure. When F' is clear or unimportant, we also simply say
solid/stable Y -structure.

It is incidental that F'is given as a bundle over X. More generally, when
F:Y — BO(R)
is any smooth tangential structure with rank R > r = rk(F), the limit (6.3.1),

and so also (6.3.4), still make sense. Then, a solid Y- or (Y, B)-structure is
defined analogously, as is a stable Y -structure.

Warning 6.3.7. The definition of a stable structure given in Definition 6.3.6 is
similar to but also completely different from another very common definition in
the literature, according to which, for instance, M is stably-framed if M x R¢
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for some d > 0 is framed. For us, the total rank is fixed, so there is a single
candidate for the trivial factor. We will never use this variant in this work.

Solid replacements in the stratified context have been considered in [7].
In categorical terms, they are cartesian fibration replacements. Namely, the
assignment in the following Definition 6.3.8 extends (by a main result of [35])
to a left-adjoint
Catoo/ VT — Cat®* )V
to the forgetful functor Cat@*®/V= — Cato,/V™ from cartesian tangential
structures (i.e., cartesian fibrations over V) to tangential structures.

Definition 6.3.8. Given a tangential structure b: B — V77, its cartesian
(fibration) replacement is

b: B=(B,b) = (V)2 x )0y B— (V)0

the source evaluation from the fibre product along the target evaluation.

Note the direct correspondence with Definition 6.3.3 (and (6.3.1)), in view
of BO(r) x BO(R—r)’s being the link of the (r, R —r)-Grassmannian, viewing
the target evaluation as the embedding @ off of the link. We will make this
precise.

A solid (F : Y — BO(R))-structure on a rank-r bundle ought to be (a lift
to) the restriction to BO(r) of the solid replacement of F:

Y|7" = BO(T) X(V“’){O} ? ------ a ?
| ) lp . (6.3.9)
1
BO(r) s Y

This is the space of morphisms in V7 that start in BO(r) and end in the
image of F' inside BO(R).

Lemma 6.3.10. Homy-(p,q) ~ Homgx(sow,r—r)) (0, q), where p € BO(r)
and ¢ € BO(R).

PRroOOF. For the most part, we repeat the argument in Remark 4.3.2 — see
there for the references. Homy- (p, ¢) is equivalent to the homotopy-fibre of

p*: Homyne(ge o) (%, *) — Homymege oy (*, *),

at ¢. Morphism spaces in a homotopy-coherent nerve are equivalent to those
in the original topological category, so it is equivalent to the homotopy-fibre
of

(—®p): BOY — BOY
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at g. The connected component of ¢ in BO§fY is BO(R), and p* maps only
BO(R — r) into it, so we have
Homy< (p, q) = (BO(R — 1) @ p) X go(mytor BO(R)*M X popyinr {q}
=7 '(p) X BO(R){0} BO(R)*M X po(r)t1 14}
= P(BO(R))1(
~ Homex(o(r,r—r)) (P; )

by Theorem 3.3.1. By m = pr; we denoted the link projection in BO(r, R —
r). O

P),q

Remark 6.3.11. We should note that Y|, is not, in general, the co-categorical
homotopy fibre product

BO(r) <} ¥ = BO(r) X yenyor Tsom(V™") X oy ¥

in the sense of [52, §01DE]: isomorphisms in V= from BO(r) to F(Y') exist iff
r = R. A Kan fibration replacement rather than a cartesian one would employ
BO(r) xb., Y.

The following is a consequence of Lemma 6.3.10 and the fully-faithfulness
of U: see the proof of Proposition 6.3.13.

Corollary 6.3.12. EX(BO(n,m)) is equivalent to the full sub-oco-category
V7 |nm of V7 generated by BO(n), BO(n +m) C V=.

Thus, the result of Joyal-Lurie/Hebestreit—Krause combined with The-
orem 3.3.1 hints at an alternative means of providing U: EXBO(n, m) < V=~
in its topological incarnation. However, this is hard to make explicit, (not too)
unlike our construction of U as a map of simplicial sets.

Proposition 6.3.13. Y|, ~ (BO(r) x BO(R —r)) X}fgo(R Y.

)

PrRoOOF. Written in full, the statement reads

BO(T) X(v<—>){()} (V%>A[” X(Vw){l} Y

~

By direct on inspection of U on exit paths of maximal index, which in the
proof of Proposition 5.2.39 is the case where dj 17 is low (the inverse is given
by sending a (k + 1)-path in BP0 to the image k-simplex of V under it.”),
and b