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Of quantities some are discrete, others
continuous... Discrete are number and
language; continuous are lines, surfaces,
bodies, and also, besides these, time and
place. For the parts of a number have no
common boundary at which they join
together... A line, on the other hand, is a
continuous quantity. For it is possible to
find a common boundary at which its
parts join together, a point. And for a
surface, a line; for the parts of a plane
join together at some common boundary.
Similarly in the case of a body one could
find a common boundarya line or a
surfaceat which the parts of the body
join together.
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Abstract

We introduce the notions of linked space, linked quasi-category and linked
manifold, which are certain spans of the ordinary versions of the respective ob-
jects, and which model stratified spaces of various kinds. We then transfer, in
depth 1, certain phenomena and constructions from stratified topology to this
setting, such as exit path quasi-categories and the beginnings of a stratified
bundle theory. We then discuss and extend the topology underlying a con-
struction of J. Lurie, which associates a functorial field theory to any framed
disk algebra, to arbitrary tangential structure, as well as an incorporation of
defects.
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Original work and self-plagiarism

Most of Section 2.2 and Chapter 3 up to and excluding Section 3.3 have
appeared in my preprint [71]. Parts of Chapter 4, including its main result,
have appeared in my preprint [72], but are produced here with an improved
presentation and with some new content. Chapter 1 also includes some ma-
terial adapted from the introductory sections of these two preprints. The rest
of the text has not been published before. All unattributed results, excepting
some classical ones recalled in the preliminary Chapter 2, are original.
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Preface

Kindness, n.
A brief preface to ten volumes of
exaction.

The Devil’s Dictionary
Ambrose Bierce

The ideas that have made it into this dissertation formed over a number of
years I spent working on various problems that are related to one another – it
seems reasonable to think – to one extent or another. Its contents, therefore,
reflect a skimming and homogenisation that was perhaps unnatural, but ne-
cessary to present a coherent story. Moreover, it is a far cry from the original
research proposal I made back in 2020, and so I think of it as a prologue to
other projects to come. If, along the way, I have made some contribution that
is of more general interest than only to myself, then I will count the time spent
typing well-spent.

There are barely any advanced prerequisites to prevent an enjoyable reading
of the text. I have gathered some preliminary material, mostly on quasi-
categories, in Chapter 2, within the main text rather than in an appendix.
Its purpose is to recall, in otherwise uncharacteristically terse French style,
some well-known definitions and facts used throughout the text, and fix some
notation. I have endeavoured to keep it minimal but complete. There are
a number of external results cited and used in other chapters, which seemed
ill-suited for full recitation in Chapter 2 or elsewhere. In such cases, I have
provided precise coordinates. If there are no accompanying remarks, the cited
result should apply without modification. In the occasion a work is cited
without further coordinates, then none of its results are logically required for
the statement being made. For the many results I cite from J. Lurie’s Kerodon
I have opted to give tags, which should be stable over time, but result in an
unorthodox citation style, such as ‘[52, 014H].’

I write ‘abelian,’ ‘cartesian,’ ‘riemannian,’ etc., without capitalising, be-
cause these words are adjectives. The royal we is used – if the reader will
allow a Kantian [sic] mannerism – to refer to any entity capable of using the
pronoun I. Consequent changes in reading are understood: we see that means
I see that; we will see that means I have seen that; and so on. I have attemp-
ted, at times unsuccesfully, to write variables in italics and constants in roman
type. Finally, notation interrupts ordinary language according to the follow-
ing rule: it comes after the noun that refers to it, and not only after all of its

ix



x PREFACE

qualifications are listed. That is, I write ‘a functor f : C → D of ∞-categories’
rather than ‘a functor of ∞-categories f : C → D.’ This is the way.

In the last few years, I have enjoyed the immense academic freedom granted
to me by my advisor, Alberto S. Cattaneo. I thank him for his trust and genial
company – mathematical and otherwise. My work and attitude have benefitted
from exchanges with many people, among whom I should like to mention
Iakovos Androulidakis, Kadri İlker Berktav, Giovanni Canepa, Nicola Capacci,
Ivan Contreras, Lennart Döppenschmitt, Marius Furter, Aleksandar Ivanov,
Emil Jacobsen, Branko Juran, Artem Kalmykov, Thomas Lehéricy, Philippe
Mathieu, Louann Rieger, Pavel Safronov, and Çaǧrı Sert. Thanks are due as
well to Joseph Ayoub, John Francis, and Thomas Willwacher for their generous
support. I thank the staff at the institute for their constant help, especially
Jessica Bolsinger, Bettina Kurth, Gunnar Lenz, and Carsten Rose; and the
staff at Kraftwerk for their impeccable operation and countless doppios. A
number of people’s influence has seeped through, directly or indirectly, into
my work: Dennis Borisov, Jörg Brüdern, Thorsten Hertl, Philipp Kastendieck,
Mark Penney, Thomas Schick, Ulrich Stuhler, Peter Teichner; Anne, Carl,
Charlotte, Jakob, and Max; Francisco, Luis, Marco, and many more besides;
and Nick, Raoul, Yasmin and company – thank you all. Call me if you find a
mistake so I can remove your name from this paragraph.

My deepest thanks are due to my family for tolerating me over the years:
my late father Erol, my late grandfather İrfan, who used to talk physics with me
when I was just old enough to remember, my mother Şermin, my grandmother
Ünver; Hans, Mattia, Rahel, Salvi, Samira – and my dearest Tabea: I look up
to you. You’ll have to continue living with my mistakes.



CHAPTER 1

Introduction

1.1. Good spans of spaces

Many results in stratified topology tend to characterise stratified spaces or
stratified maps in terms of strata and their links. These links can be either geo-
metric, like the boundary of a ‘regular neighbourhood,’ such as the boundary
of the blow-up along a singularity, or the sphere bundle of the normal bundle
of a submanifold; or they can be ‘homotopical’ in nature, defined to be path
spaces between pairs of strata, or higher-depth analogues of such.

The advantage that such results provide is that the strata and links of a
stratified space are smooth: they are non-stratified, ordinary spaces connected
by maps between them, and one can hope to transfer techniques of ordinary
topology to study such systems, and thus obtain results about the original
stratified space. For instance, in the context of homotopically stratified spaces
à la Quinn [63], Miller showed in [57, Theorem 6.3] that stratified homotopy
equivalences between such spaces are exactly those maps which induce weak
equivalences (in the ordinary sense) on strata and homotopy-links. This means
that the strata and the links determine the stratified homotopy type.

There are similar results in the more recent conically-smooth variety de-
veloped by Ayala, Francis, Rozenblyum and Tanaka [9, 6], which is a geo-
metric refinement of the conically-stratified spaces formalised by Lurie in [50,
Appendix A], which generalises the pseudo-manifolds of the early Whitney–
Thom ([80, 73]) days of the theory.1 Lemma 3.3.5 of [6] identifies the space of
paths between strata in terms of links.

It is also of great interest to obtain similar results for stratified disk algeb-
ras, or more generally for factorisation algebras locally constant with respect
to some stratification, and indeed this has been achieved in some paradig-
matic cases in the conically-smooth context. The prototypical statement is
Deligne–Kontsevich’s Swiss-Cheese Conjecture (Theorem) ([49]),2 which, in
one formulation, states that a Swiss-Cheese algebra ([79]) in dimensions n,
n − 1 (i.e., on the n-dimensional half-plane) is equivalent to an En-algebra
A (its restriction to the interior), an En−1-algebra M (its ‘restriction’ to the
boundary), and a map A → HC(M) of En-algebras (the action of A on M),
1Indeed, Whitney-stratified spaces are conically smooth: see [60]. See [62] for an in-depth
treatment of analytic and geometric aspects of stratified space theory, as well as a historical
account of the developments in the 20th century. In the present work, we will only focus on
stratified topology.
2See e.g. [23], but also [74] for a proof of the statement we give as well as a historical overview
of earlier proofs of the various incarnations of the theorem.
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2 1. INTRODUCTION

with target the Hochschild cochain object, a model for the centre of M in
the sense of [50, §5].3 Similarly, Ayala–Francis–Tanaka considered algebras on
closed intervals and on euclidean space stratified by a distinguished hyperplane
in [8, §2.6 resp. §4.3], obtaining similar algebraic characterisations. In the lat-
ter case, the action of the n-dimensional bulk algebra A on the d-dimensional
hyperplane algebra M is characterised, if we disregard some details concerning
tangential structure, by a (d + 1)-algebra map

∫
Sn−d−1 A→ HC(M), with the

link Sn−d−1 (or rather Sn−d−1×Rd)4 making a crucial and telling appearance.
In Chapter 3, we propose a construction intended to turn such results

around and build stratified spaces directly from strata and links, that is, from
collections of smooth spaces that are related by no more than ordinary maps
between them. More specifically, we restrict ourselves mostly to depth 1 in
this work,5 where, for every well-behaved span

L

M N

π ι

of spaces, we construct an∞-category EX . Here, M and N model two strata,
the former lower than the latter, L their link, and EX the exit path∞-category
à la Lurie–MacPherson–Treumann–Woolf ([76, 82, 50]). The link maps π and
ι are required to satisfy conditions that combine phenomena in the homo-
topically stratified as well as in the pseudo-manifold settings. Absent these
properties, the construction does not work: when ι is arbitrary, EX is not
even well-defined, and when π is arbitrary (but ι well-behaved), then the con-
struction yields a simplicial set EX which need not be an ∞-category.

First, the homotopy-link L between two strata M and N in a homotopically
stratified set is defined to be the space L = PM,N of paths that start in M
and end in N . Consequently, there is the source evaluation π = ev0 : PM,N →
M , which, in a homotopically stratified set, is required (by Quinn’s original
definition) to be a fibration. Similarly, we require π : L→M to be a fibration.

Second, say the link of a singular submanifold M within a pseudo-manifold
N (so thatN = NrM) is given by the boundary of its blow-up alongM , say by
the sphere bundle S = S(NM) of the normal bundle of the submanifold. Then,
we may consider the projection π : L = S→ M which is certainly a fibration,
but then there is also the map ι : S ↪→ N which is a closed embedding, and in
particular a cofibration. Indeed, we require ι : L ↪→ N to be a cofibration. We
call a span S as above with π a fibration and ι a cofibration a linked space.
In fact, ι can be simply a continuous injection. The examples that are central
to this work involve spans of infinite Grassmannians (Example 3.2.17), and
bordisms and defects (submanifolds) in Examples 3.2.15 and 3.2.16.
3It is therefore naturally an associative algebra in En−1-algebras and thus (by Dunn–Lurie
additivity [50, 29]) an En-algebra, so that we may speak of En-maps A→ HC(A).
4We have

∫
Sn−d−1 A =

∫
Sn−d−1×Rd+1 A =

∫
L×R

A by definition.
5We do discuss higher depth; most interestingly, the construction that we are about to
describe is iterable – see below.



1.1. GOOD SPANS OF SPACES 3

The construction of the∞-category EX = EX (S) is based on the following
idea. Every point ` ∈ L can identified with a 1-morphism of type M 3 π(`)→
ι(`) ∈ N . Relaxing this slightly, we may consider any path γ in N that starts
in ι(L), and take it as a 1-morphism of type π(ι−1γ0)→ γ1. The constant loop
inclusion L ↪→ P(L) ↪→ P(N) recovers the idea of taking the points of L as
1-morphisms. The simplicial set EX has objects only the points of M and N ,
and 1-morphism the paths in M and N and moreover, separately, all paths in
N that start in ι(L). Such paths, the ‘exit paths,’ are clearly non-invertible
since there are, by construction, no morphisms from N to M .

Constructing simplices of higher dimensions in such a way that EX becomes
an ∞-category is most of all a ‘combinatorial’ challenge. We define the n-
simplices to be the n-simplices (of M and N together with those) in N such
that, most importantly, its restriction along ∆{0,1,...,e−1} ↪→ ∆n for some n+1 ≥
e ≥ 1 lies wholly within ι(L). We call e the exit index of the simplex in
question. The idea is that, in depth 1, this index, together with the underlying
simplex in N , determines how and where the latter comes into contact with
M and N . For instance, if a 2-simplex is (witnesses) a composition of a path γ
in M and an exit path δ, then it will be underlied by a 2-simplex Γ: ∆2 → N
such that its 01-edge Γ|01 = d2(Γ), i.e., its restriction along ∆{0,1} ↪→ ∆2 is
in ι(L), and such that π(Γ|01(0)) = γ(0),6 π(Γ|01(1)) = γ(1), and of course
δ(0) = Γ|01(1):

∗

∗ ∗

∗ ∗

Γ|01

δ

γ

π π

Here, the bottom row is within M , and the triangle depicts the 2-simplex Γ of
N which underlies the composition 2-simplex, which is depicted by the whole
picture. The 01-edge of this 2-simplex is in fact γ by construction, and its
12-edge is the exit path δ, which is 1-morphism with source π(δ0) = γ(1) ∈M .
This particular composition is a 2-simplex of exit index 2 in our convention,
owing to the fact that the top-most vertex, which is number 2, is the first
one that has exited into the ‘higher stratum’ N . In order to compose an exit
(1-)path γ from π(γ0) to γ(1) with a path δ in N starting at γ(1), we introduce
exit 2-paths of index 1 into EX , which can be depicted as follows:

∗ ∗

∗

∗

δ

γ

π

6We suppress ι−1.



4 1. INTRODUCTION

Here the exit index is 1 because already the vertex 1 has exited into N . There
are similar pictures in higher dimensions, where in dimension n there are n
different possibilities for the exit index, giving n different classes of n-simplices,
which interact with each other appropriately upon application of (the appro-
priately defined) face and degeneracy maps.

The combinatorial nature of the construction above lets us apply it in
greater generality than with input topological spaces only. In fact, we prove
the following:

Theorem (3.2.11). Let M, L, N be ∞-categories, π : L → M a right
fibration, and ι : L → N a cofibration. Then EX

(
M π←− L ι−→ N

)
is an ∞-

category.

A consequence of this degree of generality is that the construction is it-
erable: given a linked space (or ∞-category) S, we can build its exit path
∞-category, and use that as input for a span e.g. of type S′ = (EX (S) ←
L′ → N ′) to construct EX (S′), and so on, which will model exit paths in higher
depth. This is the topic of Section 3.5; the rest of this work is independent of
such conjectural thoughts.

We call spans of∞-categories of the type above linked∞-categories. Given
the ubiquity of right fibrations of ∞-categories in view of their equivalence to
space-valued presheaves (via (un)straightening – see [51, §3] or [17, §5] for
textbook accounts), the result suggests a practical approach to implement
ideas of stratified topology in many different contexts.

Before we explain why this is a good construction so that EX does indeed
behave like the exit path ∞-category of a stratified space, let us mention that
philosophically similar ideas have already appeared in the literature. Douteau,
in [25], gives a Quillen equivalence between a certain model category of strat-
ified spaces and a model category of diagrams of simplicial sets indexed over
(non-degenerate sequences in) posets. Because the bulk of this dissertation
is concerned with stratified bundle theory in disguise, the construction of the
stratified simplicial set (which is then realised to a stratified topological space)
associated with a diagram of simplicial sets is too unwieldy for our purposes.
It does not yield∞-categories in general (see [26, Recollection 2.53 ff.]),7 which
we certainly need, and is defined as a certain colimit (computing a certain left
Kan extension – see [26, Recollection 2.37]), which makes it rather impractical
for some of our necessarily hands-on constructions. This is not unexpected,
since the construction is completely unburdened by topological assumptions
on the link maps such as the ones we have. However, the work of Douteau et
al. contains a wealth of ideas that may be useful in pushing the idea of EX
further, especially to higher depth without relying on the iteratibility of the
construction. We leave such questions to future work.

Now, the following results show that EX behaves as one would wish it to.

7It is however the case that the exit path ∞-categories associated with conically-smoothly,
conically, and homotopically stratified spaces (sets) are all ∞-categories ([50, 59, 6]).



1.2. THE TANGENTIAL THEORY 5

Theorem (3.3.1). Let S =
(
M π←− L ι−→ N

)
be a linked ∞-category, and

p ∈M and q ∈ N points in the two strata. We then have an equivalence
HomEX (S)(p, q) ' PLp,q

between the morphism space in EX from p to q and that of paths in N that
start in the embedded fibre ι(Lp), where Lp = {p} ×M L, and end in q.

This is a pointwise statement. We globalise it in Section 3.4 for linked
spaces and prove

Theorem (3.4.1). Let S =
(
M

π←− L
ι−→ N

)
be a linked space. Then

L ' (M ↓ N).

Here, (M ↓ N) = M ×EX {0} EX∆[1] ×EX {1} N is the oriented fibre product
of M,N ↪→ EX . We should note that their ∞-categorical homotopy fibre
product (in the sense of [52, 032Z]) is empty, because, as we already noted, it
is clear from the construction that EX contains no isomorphisms from M to
N . The result above is not (and should not be) true for linked ∞-categories
in general; instead, we expect [6, Lemma 3.3.5] to hold mutatis mutandis.

Believing it to be too soon, and because it is unnecessary for our purposes
in this work, we will not be concerned with setting up a model category of
linked spaces (or of linked ∞-categories). Hoewever, we will propose a notion
of a map of linked spaces in Section 7.1 that recovers and extends ordinary
stratified maps, and, at least in depth 1, propose a linked realisation, which
is sometimes conically smooth, of a constructible linked manifold in Defini-
tion 7.1.14, by repurposing an idea from [6]. A better name might have been
‘stratified realisation,’ but this might lead to confusion with ideas of, say [24,
25] or [6].

1.2. The tangential theory

For the purpose of constructing a theory of factorisation homology that can
take as input any (∞, n)-category and evaluate it on appropriate variframed
stratified spaces, Ayala–Francis–Rozenblyum defined in [7] the ‘fibrewise con-
structible tangent bundle’ Tfib of a (conically-smooth) stratified space, which
intrinsically depended on their earlier work, in part with Tanaka, on the gen-
eral theory of conically-smooth stratified spaces ([9, 6]). The functor Tfib (or
rather its nonrelative special case to which we restrict our attention) on a
stratified space X is given in the form of a classifying map

Tfib : Exit(X)→ V inj,

whose domain is their version of the exit path ∞-category. It is equivalent
to the model of Lurie–MacPherson by a result of [6]. The target V inj is what
we will call the ‘stratified Grassmannian,’ an ∞-category that assembles the
fundamental ∞-groupoids of the ordinary infinite Grassmannians of all ranks,
and adds non-invertible paths between them that increase rank.
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By exodromy, such a functor classifies a constructible sheaf on X, which
may be interpreted as the sheaf of sections of the ‘tangent bundle’ – although,
to our knowledge, no étalé space of this sheaf has been discussed in the lit-
erature. Combining the bundle span featuring in Construction 6.1.5 with
the linked realisation of Definition 7.1.14 provides such a space in depth 1,
and Chapter 5 is mainly concerned with placing its quasi-categorical classifier
within the model of V inj we give in Chapter 4.

In keeping with the theme of the previous section, we present a construc-
tion of a quasi-categorical variant, V ↪→, of V inj that does not rely on stratified
space theory. Namely, Section 4.1 constructs a topological monoid whose op-
eration is given by direct-summing vector spaces. To this end, we circumvent
the more systematic treatment of spectra with E∞-structure ([50]) or ultra-
commutativity ([68]) by adding some redundancy that achieves on-the-nose as-
sociativity. In order to develop a real K-theory (spectrum) for linked/stratified
spaces, one should pursue a different treatment, but our construction may be
informative with respect to its zeroeth space.

Even though the direct (Whitney) sum operation on vector bundles is com-
mutative up to canonical isomorphism, the corresponding operation on classi-
fying spaces is only homotopy-commutative. In fact, the maps

⊕ : BO(m)× BO(n)→ BO(n+m)

induced by direct-summing rank-m and rank-n vector subspaces of R∞ is also
not associative, but only so up to (contractible) homotopy. We give a straight-
forward strictification of (

∐
k≥0BO(k),⊕), obtaining a topological monoid

(BO∞
q ,⊕).

We note in passing that there is a very non-canonical homeomorphism

BO∞
q
∼= ∗ q Z+ ×

∐
k≥1

BO(k),

where the extra factors on the right are a result of the strictification.
Now, finally able to follow the idea of [7, Remark 2.7], we can take its

delooping, B⊕O, the topological category with a single object ∗ and morphism
space BO∞

q , take its homotopy-coherent nerve Nhc(B⊞O), which is a quasi-
category, and finally ‘loop’ again by passing to the under-∞-category under
∗:

V ↪→ := ∗/Nhc(B⊕O).

As we will note, this order of operation is crucial in order to obtain the desired
object, in the sense that taking Nhc(∗/B⊕O) instead, the nerve of the topo-
logical under-category, ‘forgets’ the topology (see Remark 4.3.2). In V ↪→, one
has the objects of BO∞

q , and a 1-morphism
V → K

from a rank-n vector space V to a rank-(n+m) vector space K is exactly the
choice of a rank-m vector space W and a path

W ⊕ V → K
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in BO(n+m).8 This resembles the idea of EX we discussed above, and making
this resemblence precise will be a major topic of this dissertation. We prove
that V ↪→ adds no more non-invertible paths to BO∞

q :

Theorem (4.3.11). V' ' BO∞
q .

Here, V' is the maximal sub-∞-groupoid of V ↪→, a.k.a. its core. While the
statement seems obvious, it is not immediately obvious how to provide a map,
in either direction, that realises such an equivalence. We construct an explicit
map

Ψ: BO∞
q → V'

that we then prove is an equivalence by indirect means. We develop the tech-
nology required to provide an explicit inverse – assuming one does not wish to
effectively go through the construction constituting the proof of Whitehead’s
theorem – only later, in Chapter 5. The definition of Ψ is also a warm-up to
the less trivial depth-1 version of it, which we will discuss momentarily.

The proof applies mutatis mutandis to the delooping of any topological
monoid M whose only invertible point is its unit. That is, the proof shows in
this case that there is an equivalence

(∗/Nhc(BM))' 'M

of ∞-groupoids. We interpret this to suggest ∗/Nhc(−), with slightly mislead-
ing terminology, as a stratified loop space functor which creates non-invertible
paths in M that depend on the monoidal structure. It is thus an inverse to
B only at the level maximal sub-∞-groupoids. It remains desirable to un-
derstand how, and whether, the idea generalises to accomodate non-strictified
structures, and what an eventual stratified Recognition Principle, and a useful
definition of spectrum with quasi-categories appearing in this way, may then
look like.

In Section 6.1, we finally arrive at a definition of a quasi-categorical incarn-
ation of Tfib (in the nonrelative case) that circumvents the theory of conically-
smooth stratified spaces. Given a linked manifold S, a certain collection of
classifiers organise into a span map (see Construction 6.1.5)

TS : S→ BO(n,m)

from S to the linked Grassmannian
BO(m)× BO(n)

BO(n) BO(n+m)

pr

⊕

with the appropriate ranks, which then embeds into V ↪→ via the unpacking
map

U : EX (BO(n,m))→ V ↪→.
8We are simplifying notation somewhat at the expense of ignoring certain subtleties concern-
ing some non-canonical choices, but, as we will see, these issues turn out to be immaterial
(due to the straightforward Lemma 6.1.1).



8 1. INTRODUCTION

This map is the sole subject of Chapter 5, with the main result being its
existence:

Theorem (5.1.3). There is a fully-faithful functor U : EX (BO(n,m)) →
V ↪→ of ∞-categories.

The fact that this map is fully faithful is much easier to see than the
fact that it exists. Indeed, Chapter 5 is devoted wholly to its construction,
and we note said property only later in the proof of Proposition 6.3.13. Due
to the point-set definition of EX , and the cumbersome definition of Nhc, the
construction is rather lengthy, and utilises some convexity arguments for its
key idea. While the construction applies in the generality discussed above
with topological monoids, it is not at all clear how to extend it to a purely
combinatorial (simplicial) or algebraic context: it seems to depend crucially
on translating back and forth between topological spaces and Kan complexes
using the classical adjunction between geometric realisation and the singular
chains functor. In brief, it remains desirable to obtain a simpler construction
of U.

Such questions notwithstanding, the span map TS induces a map
TS : EX (S)→ V ↪→

of ∞-categories. We thus transport the tangential theory in the conically-
smooth context to the linked context.

Chapter 6 is then devoted to a study of a certain kind of tangential structure
in this setting. A given smooth (non-stratified) tangential structure

F : Y → BO(n)

of rank n can be seen as a stratified tangential structure
F : Y → BO(n) ↪→ V' ⊂ V ↪→

after including BO(n) into V ↪→. However, stratified spaces with Y -structure9

are exactly the smooth (trivially-stratified) spaces with Y -structure in the
ordinary sense. The simplest and most elegent generalisation of this idea that
produces non-trivial results is also due to AFR, who, in [7], consider solid Y -
structures on stratified spaces, which generalise the idea that if a manifold M
is of dimension n′ < n, then a solid Y -structure ought to be a Y -structure on a
rank-n extension of its tangent bundle TM . In the categorical literature, this
replacement of F : Y → V ↪→ is known as a cartesian fibration replacement, and
we borrow that name for the following definition, which is due to AFR:

Definition (6.3.8). The cartesian fibration replacement of F : Y → V ↪→
is the ∞-functor

F : Y = (Y, F ) = (V ↪→)∆[1] ×(V↪→){1} Y → (V ↪→){0},

the source evaluation from the fibre product along the target evaluation.

It is a result of [35] that this does indeed give a cartesian fibration replace-
ment of F over V ↪→.
9We mostly suppress F .
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The main result of Chapter 6 is a characterisation of cartesian tangential
structures on linked manifolds in classical terms:

Theorem (6.4.20). A linked manifold possesses a cartesian Y -structure if
and only if it possesses a solid Y -structure.

Here, a solid Y -structure means, by our definition unlike AFR’s, a solid
structure on the individual strata (in the ordinary sense described above),
together with a compatibility (map) over links: see Definition 6.4.18, which is
completed by Remark 6.7.14. It can be expressed as a lift to a particular span
of spaces over BO(n,m) – see Observation 6.4.19.

1.3. Field theory and very generalised homology

We will finally discuss Chapter 7, which has the modest aim of discussing
and extending the topology underlying a construction of Lurie from [53, §4.1].
It associates with any input framed disk algebra a functorial field theory, and
we allow arbitrary smooth tangential structures as well as defects. Allowing
defects turns out to lead away from the conically-smooth theory, and so the
full construction awaits the development of a theory of algebras and homology
native to the linked setting, not to mention the appropriate target Morita
category, all of which we leave to future work. Therefore, the only goal of
this chapter is to discuss the underlying topological construction. As will be
evident, our approach is heavily influenced by that of [67] and some results
from [9, 8].

At chain level, homology theories in a certain generalised sense can be char-
acterised as functors F , on spaces of a certain type, satisfying two properties:

• compatibility with collared cutting and gluing: if M =M−qM0×RM+,
then F(M) ' F(M−)⊗L

F(M0×R) F(M+), and
• compatibility with exhaustion: if M = colim(∅ ⊂ M0 ⊂ M1 ⊂ · · · ),

then F(M) ' colimNF(Mi).
For spaces M locally modelled by ‘basic disks’ with a specified type of

stratification and possibly a specified tangential structure (organised in an
∞-category of ‘basics’ possibly with such structure), Ayala–Francis–Tanaka
(AFT) showed in [8] that functors F (valued in a nice symmetric-monoidal∞-
category C) as above are necessarily given by factorisation homology, F(M) =∫
M
AF , with coefficients in a basic-disks-algebra A = AF (in C). We will

refer to this fact as the Locality Theorem. This is about ‘homology theory’
in that, in essence, A gives rise to a locally-constant factorisation algebra on
M , which can be seen as a cosheaf on the Ran space of M , and factorisation
homology becomes (0’th) cosheaf homology (i.e., global sections).10 Moreover,
some well-known homology theories, such as singular homology and Goresky–
MacPherson intersection homology, can be recovered at least at chain level by
factorisation homology.
10These ideas go back to the chiral homology of Beilinson–Drinfeld [11]. Their topological
incarnation at the level of factorisation algebras rather than homology was developed by
Costello–Gwilliam in [21, 22] and by Lurie – at both levels – in [50].
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The Locality Theorem can be seen as a homological version of a special
case of the Cobordism Hypothesis.11 The Cobordism Hypothesis goes back to
the work of Baez–Dolan [10],12 and is sometimes rendered as the statement
that a topological quantum field theory, organised as a (higher) functor out
of an appropriate fully-extended bordism category into an appropriate higher
symmetric monoidal target category C, is determined by its value on a point.13

The Locality Theorem is easier to prove than the Cobordism Hypothesis, and
so, by the law of the conservation of difficulty, if a translation of the kind
we mentioned exists, it should be hard to make precise. The meta-goal of a
program, of which we think this work ought to be a part, is to give an ex-
press duality between homology theory (in the sense above) and (extended)
functorial field theory, such that AFT’s theorem translates to the Cobordism
Hypothesis. We will now briefly sketch some reasons why this might be expec-
ted, and then go on to motivate and explain the contributions of the present
work. We will drop the adjectives ‘topological’ and ‘quantum,’ and will simply
speak of (extended) functorial field theories, or (e)FFTs.

In [53, §4.1], dissatisfied with the Cobordism Hypothesis due to its calcula-
tional impractibility, Lurie proposed a way to construct an eFFT that can be
described rather concretely: one would take as input an En-algebra A ([56, 55,
50]), or, equivalently, an n-dimensional unstratified disk algebra with tangen-
tial structure given by framings (see [36] for a quick exposition), and as output
would produce a symmetric-monoidal (∞, n)-functor ZA on the n-dimensional
fully extended bordism category with stable n-framings with values in ‘the’
Morita category of En-algebras (see also [44, 43] for a history and discussion
of the scare quotes). The idea of this construction in terms of factorisation
algebras as worked out in Scheimbauer’s thesis [67] is explained briefly in [70];
another friendly introduction is [1].

It is, in essence, the iterated application of the following basic idea: let M
be a manifold with, for simplicity, a single boundary component ∂ = ∂M , and
say, again for simplicity, that the top dimension of the bordism category is n,
and M is n-dimensional. A stable n-framing on M induces a framing on M◦,
and a framing on ∂ × R, the framed collar of the boundary. Consequently,∫
∂
A, which is by definition

∫
∂×R

A, is naturally an E1-algebra due to the R-
factor (and the functoriality of

∫
−A), whereas

∫
M0 A is merely an E0-algebra

in C, i.e., a pointed object therein, its pointing coming from the inclusion of
the empty subset (and again the functoriality of

∫
−A). These two algebras

that M and A give rise to are related by an action, one of
∫
∂
A on

∫
M◦ A,

parametrised by embeddings of the collared boundary into the interior. In
other words, they couple to give a factorisation algebra on the half-line R≥0

11The idea of applying techniques of stratified space theory and factorisation homology to
functorial field theory is certainly not new: this was discussed already in [4, §1]; see also [5].
12See Freed [34] for a friendly introduction.
13This is in reference to an especially simple unstructured case of the statement. A better
(and still unstructured) reformulation is that such TQFTs correspond to the fully-dualisable
objects of C.



1.3. FIELD THEORY AND VERY GENERALISED HOMOLOGY 11

that is locally-constant with respect to its boundary stratification. This can be
realised – and here we digress slightly from the standard account – by pushing
forward the factorisation algebra induced by A on M◦ to R≥0 by sending all
of ‘M ’ to ∗, and by projecting ∂ × R≥0 → R≥0. More precisely, this is a
stratified map only upon refining M◦ with a new stratification induced by the
closed submanifold ∂ ∼= ∂+ ⊂M◦ given by ∂ pushed inwards along a nowhere-
vanishing inward-pointing normal vector along ∂ for some positive time, which
gives

M◦ ∼= M q∂+ ∂ ×R≥0,

which in turn yields the refinement
M →M◦

with domain consisting of the three strata M◦, ∂+, and ∂×R>0. The ensuing
projection

p = pM : M →M ! := R≥0

defines the field theory associated, in this approach, with the input algebra A,
by setting

ZA(M) := (pM)∗(A).

The notation obfuscates the dependence on tangential structures, but this is
understood. More specifically, the Pushforward Theorem of AFT [8, Theorem
2.25] applies to the constructible bundle pM and defines ZA(M) in the setting
above.14

If there are two (groups of) boundary components – say ‘incoming’ and
‘outgoing’ –, we can proceed similarly and push the algebra forward to R{0},
to the real line stratified by a distinguished point. In higher codimensions,
the collars have higher-dimensional n-framed collars, so one obtains algebras
on euclidean spaces with flag-like stratifications: see [67]. On a point ∗, the
collar is merely Rn = ∗ ×Rn, and the pushforward of A along the projection
∗ ×Rn → Rn gives A itself, so that ZA illustrates the Cobordism Hypothesis
by being determined by its value on ∗.

Moreover, the Locality Theorem and the Cobordism Hypothesis combine
to imply that homology theories on framed n-manifolds correspond exactly
to eFFTs on the stably-framed bordism category with values in the Morita
category of En-algebras. More interestingly, the functoriality of the rule M 7→
pM (again suppressing the choice of tangential structure) along the 1-extended
bordism category translates to the compatibility with collared cutting and
gluing, which we invite the reader to check in low dimensions.

This approach is beset with a number of technical difficulties. The defin-
itions of the various extended bordism categories are much less easy to work
with than the classical global (1-extended) Atiyah(–Segal–Witten) formalism
([2, 3, 69, 81]), leading to various theorems and theorem sketches but rather few
examples. A worked-out definition finally appeared in Calaque–Scheimbauer
[15] after [67], and put to use in [14]; variants and extensions appeared in [40,
14The algebra A is defined on M◦, and the projection M◦ → R≥0 is weakly constructible,
becoming constructible along the refinement M →M◦ as discussed.
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41]. However, at least as far as FFTs associated with disk algebras are con-
cerned, these aspects seem to distract somewhat from the essential topological
operation described above.

Indeed, the way we have presented the construction is non-standard: we
are not working with bordisms defined by cut functions on a smooth manifold
(without boundary) of full dimension, and we rely on the theory of factorisation
homology on stratified spaces to give a one-line construction of ZA, at least
in codimension 1. From this point of view, it is clear that the construction is
valid for an input algebra A with any tangential structure, provided that M
is stably-structured in the same manner. What is essential is the projection
pM associated with it, and that the ‘collar’ M , a refinement of the interior15

possess the tangential structure in question in the usual sense, so that the
Pushforward Theorem applies.

Indeed, we systematise the rule M 7→ pM in depth 1 in Definition 7.2.2,
and call it the P 2 construction. It summarises the ideas discussed above and
is quite straightforward in its linked formulation. It is preceded by a necessary
preliminary section on maps of linked spaces, Section 7.1. Upon linked realisa-
tion, the P 2 construction recovers the ordinary stratified version of the story.
Once this has been achieved, there are two further directions that remain to
be dealt with.

First, defects. Factorisation homology on stratified spaces with tangen-
tial structure is perfectly capable of evaluating defect submanifolds, not just
boundary components. Therefore, in an approach that uses this theory, the P 2

construction, and the ensuing FFT construction A 7→ ZA = (M 7→ (pM)∗A)
should therefore have an extension that takes into account defect submanifolds
within M .16 We describe such an extension in Section 7.4, and see that the
projections can have targets such as

upon realisation – see Example 7.4.8. The stratified spaces thus obtained are
conically smooth (see Remark 7.4.9), and AFT’s Pushforward Theorem can
be applied to the weakly constructible bundles p, defining the TQFT.

We then also discuss cutting and gluing, which is ‘dual’ to functoriality,
and obtain the following

15possibly times some euclidean factor
16The idea of connecting factorisation algebras/homology, or stratified space theory, with
defect coupling is one that is very much in the air at the time of writing. There is some
progress in BV(-BFV)-type contexts: see [18] and the references therein.
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Proposition (7.5.5). The P 2 construction is compatible with cutting and
gluing.

In the linked setting where we formulate it, this proposition has a com-
pletely straightforward proof. Our treatment of cutting-and-gluing is quite
on-the-nose and conforms to that in more physically-minded literature, such
as e.g. in [16], much closer to the Atiyah formalism.

Until Section 7.6, P 2 does not refer to any tangential structure, and so
works with any at the price of being insensitive to it. In order to formulate a
sensitive version, we define in Definition 7.6.1 a stable Y -structure on a linked
manifold based on our result on cartesian structures on linked manifolds. We
then note in Lemma 7.6.3 that the construction can be applied to bordisms
with defects equipped with a stable Y -structure: see Definition 7.6.4.

We conclude with Section 7.7, which contains a brief discussion the follow-
ing problem: It is not clear how to extend the P 2 construction to bordisms
with defects that only possess a cartesian structure. We discuss the reason
why, and a trivial and unsatisfactory remedy. A version of the construction
does apply to bordisms with cartesian structure if they do not have defects:
see Remark 7.7.2.

1.4. Conventions

We list some of our conventions below. More will be fixed in Chapter 2.

• The set N of natural numbers includes zero.
• We denote the real line by R.
• We denote by ∆ the simplex category, and its objects by [n], n ∈ N.

The standard n-simplex is the simplicial set ∆[n] = Hom∆(−, [n]),
and we employ the Yoneda Lemma without mention.
• ‘Coface’ and ‘codegeneracy’ maps we simply call ‘face’ and ‘degener-

acy’ maps.
• We say∞-category to mean a quasi-category, and∞-groupoid to mean

a Kan complex.
• Cartesian products of simplicial sets are defined dimension-wise.
• Given two simplicial sets C,D, we write CD = Fun(D, C) for the simpli-

cial set whose set
(
CD
)
k

of k-simplices is the set of maps D×∆[k]→ C
of simplicial sets, together with the obvious simplicial maps.
• A cofibration of simplicial sets is a monomorphism.
• For x ∈ C an object, we write C/x rather than C/x for the over-∞-

category over x, and similarly x/C for the under-∞-category.
• A map of∞-categories is a map of the underlying simplicial sets, i.e.,

a natural transformation between the two set-valued presheaves on
∆. Occasionally, we call such a map an ∞-functor.
• Given maps f : A → C and g : B → C of ∞-categories, we write
(f ↓ g) = (f ↓ g)C or, if the maps are understood, (A ↓ B) = (A ↓ B)C
for the ∞-categorical comma category construction (called oriented
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fibre product in [52]) defined to be the iterated fibre product
(f ↓ g) = A×C{0} C∆[1] ×C{1} B.

• An equivalence of ∞-categories is an equivalence-of-∞-categories as
in [52].
• When a topological space X appears in place of an ∞-category, we

mean the ∞-groupoid Sing•(X) of its singular chains.
• By a Kan-enriched category we mean a locally Kan category, i.e., a

simplicially-enriched category whose morphism spaces are Kan com-
plexes.
• Smooth manifolds have no boundary.
• We denote the trivial real rank-k vector bundle over a given space by
εk.



CHAPTER 2

Preliminaries

2.1. Quasi-categories

Quasi-categories are to stratified spaces as Kan complexes are to spaces.

2.1.1. Kan complexes and spaces. To expand briefly,1 let

∆n :=
{
(x0, . . . , xn) ∈ Rn+1 :

∑
xi = 1

}
be the standard topological n-simplex, the convex hull of the standard basis
of Rn+1. For X a topological space, let Xn := HomTop(∆

n, X) be the set of
continuous maps from ∆n to X, called the set of n-simplices of X. There are
natural maps between the sets in this collection induced by pulling back along
(pre-composing with) maps of type ∆n → ∆m for varying n and m. Maps of
the latter kind can themselves be given in terms of which corner, i.e., basis
vector, in ∆n is mapped to which corner in ∆m, and so in terms of functions
of type {0, . . . , n} → {0, . . . ,m}. Asking these latter maps to respect the
natural orientations of the standard topological simplices amounts to asking
that they be non-decreasing, which leads us to the simplicial set structure on
the collection (Xn)n∈N. That is, abstracting away from the space, we have
arrived at (most of) the following

Definition. A simplicial set is a collection S = S• = (Sn)n∈N of sets
together with a map φ∗ : Sm → Sn for every order-preserving map φ : {0 ≤
· · · ≤ n} → {0 ≤ · · · ≤ m}, such that φ∗ψ∗ = (ψ ◦ φ)∗ whenever ψ and φ
compose.

In other words, a simplicial set is a functor S : ∆op → Set, where ∆ is the
simplex category, whose objects are the finite ordinals [n] := {0 ≤ · · · ≤ n},
n ∈ N, and whose morphisms are given by order-preserving maps. The target
Set is the category of sets and functions. One writes Sn := S([n]). The maps φ∗

are called simplicial maps. A map of simplicial sets is a natural transformation.
The resulting category of simplicial sets is denoted by sSet = Fun(∆op, Set).

2.1.2. Geometric realisation. The collection (Xn) induced by a topo-
logical space X as discussed above can be expressed as the simplicial set

Sing•(X) : ∆op Topop Set
|−| HomTop(−,X)

1We assume that the reader is familiar with ordinary category theory, including the Yoneda
Lemma, adjunctions, Kan extensions, and enrichment (see, e.g. [54, 64]), as well as with
basic homotopy theory.

15
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and is called the complex of singular chains of X. Here, | − | is called the
geometric realisation functor, defined by [n] 7→ |[n]| := ∆n and

(φ : [n]→ [m]) 7→

(t0, . . . , tn) 7→

 ∑
φ(ti)=0

ti, . . . ,
∑

φ(ti)=m

ti

 ,

where empty sums are understood to be zero. Less trivially, and more com-
monly, | − | has a left Kan extension

| − | : sSet→ Top

along the Yoneda embedding ∆(−) : ∆→ sSet. The latter is given by
[n] 7→ (∆[n] := ∆([n]) : ∆op → sSet, [n] 7→ Hom∆(−, [n])) .

This being an extension, we have |∆[n]| = |[n]| = ∆n. It exists because Top is
cocomplete and so can be computed as follows:

|S| = colim∆[n]→S∆
n.

This is a non-sensical expression that abbreviates the colimit in Top of the
diagram

(∆ ↓ S) → Top

where (∆ ↓ S) is the comma category taken within sSet of the functors ∆(−)
and {S} ↪→ sSet, that is, the category whose objects are maps ∆[n] → S
of simplicial sets and whose morphisms from ∆[n] → S to ∆[m] → S are
maps ∆[n] → ∆[m] such that the resulting triangle commutes. The functor
(∆ ↓ S) → Top is the composition (∆ ↓ S) → ∆ → Top given by first
forgetting to domains and then applying the original | − |.

We have thus set up the functors Sing•(−) : Top ⇄ sSet : | − |. In fact,
| − | is left adjoint to Sing•(−), as can be seen by applying the formula for
|− |. When S is the complex of singular chains of a topological space, then the
adjunction yields natural bijections HomsSet(∆[n], S) ∼= Sn. More generally,
this is implied for any simplicial set S by the Yoneda Lemma. Much more
can be said about this adjunction, but need not be. See [39] for a textbook
account.

2.1.3. Composition and contractibility. Let us observe now that a
simplicial set S is a relaxed kind of (small) category: the set S0 is called the
set of its vertices or objects, and the set S1 is called the set of its edges or
morphisms. The source and target maps are the pullbacks along the maps
[0] → [1] given by 0 7→ 0 and 0 7→ 1, respectively. The identity morphism
idx ∈ S1 at x ∈ S0 is given by pulling x back along [1] → [0], 0, 1 7→ 0.
However, the straightforward renamings end here since S carries no map that
emulates composition of morphisms. Instead, one says that a composition of
f : x → y and g : y → z is witnessed by a 2-simplex H ∈ S2 whose pullback
along [1]

id
↪−→ [2] and [1]

id+1
↪−−→ [2] is f and g, respectively. In this case, H is said

to witness its pullback along [1] → [2], 0 7→ 0, 1 7→ 2 as a composition of f
and g.
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The simplicial set S will emulate category-like composability of morphisms
if, given f and g as above, an H as above exists uniquely. However, for
the associativity of composition, and its ‘coherence,’ we will have to consider
witnesses of higher and higher dimensions. If all such witnesses exist uniquely,
then S will uniquely determine, and be determined by, a category. But since
our aim is not just to re-express category theory, let us consider the question
as to how we can organise composition when H does exist but not uniquely.

Given f and g, there is a whole simplicial set of witnesses H. In order to
express it, note first that the simplicial set of composable morphisms in S can
be written as the pullback

Comp(S) Fun(∆[1], S)

Fun(∆[1], S) Fun(∆[0], S)

⌜
ev1

ev0

where every term is a simplicial set. Indeed, in contrast to HomsSet(−,−),
which gives sets, one writes Fun(A,B) = Fun•(A,B) for the simplicial set
whose set of n-simplices is HomsSet(A × ∆[n], B), and whose simplicial maps
are induced by applying them on the ∆[−]-factor. The maps ev1 and ev1
are induced by taking source and target, respectively. Now, observe that a
2-simplex of S provides, as discussed above, a pair of morphisms one of whose
target vertex is the source vertex of the other. Going through the Yoneda
Lemma, we obtain the function Hom(∆[2], S) → Hom(∆[1]) × Hom(∆[1], S),
which trivially extends over the ∆[−]-factor to define a map Fun(∆[2], S) →
Comp(S). The simplicial set of compositions of f and g is then the fibre of
this map at (f, g) ∈ Comp(S)0, that is, the pullback

Comp(f, g) Fun(∆[2], S)

{(f, g)} Comp(S)

⌜

where {(f, g)} is the simplicial set given by a singleton at each degree, and the
map {(f, g)} → Comp(S) sends the unique vertex to (f, g), and the unique
n-simplex to the pullback of (f, g) along the unique map [n]→ [0].

Asking that f and g compose essentially uniquely, that is, that the choice
of witness be topologically irrelevant, can be made precise by asking that
Comp(f, g) be contractible. The notion can be borrowed directly from (its
weak version in) classical homotopy theory by expressing spheres in simplicial
terms: for each n ∈ N, there is a simplicial subset ∂∆[n] ⊂ ∆[n], the boundary
of ∆[n], or the simplicial n-sphere. It is empty if n = 0, and if n ≥ 1, then
it is the simplicial subset generated by the pullbacks di(id[n]) of id[n] ∈ ∆[n]n
along the maps ∂i : [n− 1] ↪→ [n] that skip i ∈ [n]:

∂i(x) =

{
x, x ≤ i− 1,

x+ 1, x ≥ i.
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These are called the face maps, pullbacks along which are denoted, as already
indicated, by di.2 The contractibility of a simplicial set X can thus be expressed
by the condition that all simplicial n-spheres in X have fillers, that is, every
lifting problem of type

∂∆[n] X

∆[n]

admits a solution.
If Comp(f, g) is contractible for every composable pair (f, g) of morphisms

in S, then S is called a quasi-category, and we will call it an∞-category in the
rest of this work.3 Contractibility entails non-emptyness, whence composing
is always possible.

This conceptual definition is equivalent, by a result of Joyal (proved in
[52, 0079]), to the following traditional definition. Let, first, Λni ⊂ ∆[n] be the
simplicial subset generated by all the faces djid[n] of ∆[n] except for the i’th
one, called the i’th horn of ∆[n].4 Then S is an∞-category if and only if every
lifting problem of type

Λni S

∆[n]

admits a solution whenever 0 < i < n. For such natural numbers i and n, Λni
is called an inner horn, and when i = 0 or i = n, it is called an outer horn.
This condition is called the weak Kan condition5 and the analogous condition
for all 0 ≤ i ≤ n is called the Kan condition. Simplicial sets that satisfy the
latter are called Kan complexes, and we will also call them ∞-groupoids.

Composable pairs of morphisms in S correspond to maps of type Λ2
1 → S.

Let now f : x→ y be a morphism in S, and consider moreover the identity idx.
These arrange into an outer horn Λ2

0 → S, and if it has a filler F : ∆[2] → S,
then F witnesses idx as a composition of the morphisms f and d0F , i.e., the
latter as a left-inverse of f . Similarly, f and idy give an outer horn Λ2

2 → S, a
filler F of which witnesses d2F as a right-inverse of f . Similar considerations

2An equivalent definition (that of [52, 000R]) of ∂∆[n] can be given by setting (∂∆[n])([m]) =
{α ∈ Hom∆([m], [n]) : α is not surjective} and using the obvious simplicial maps.
3There are several definitions of what, following Lurie, we call an ‘∞-category,’ and all
fall under the less opinionated umbrella term ‘(∞, 1)-category,’ all connected by chains of
Quillen equivalences with respect to certain model structures. The term ‘quasi-category’
is universally accepted to mean what we mean by it. The notion goes back to [13, 78],
and was developed alongside another model, that of simplicially enriched categories, which
we will discuss below. There are systematic treatments and comparisons of the competing
(complementary) definitions. See e.g. [75, 48, 12]. Several other foundational works on the
subject will be mentioned later.
4Equivalently ([52, 000U]), Λn

i ([m]) = {α ∈ Hom∆([m], [n]) : [n] 6⊆ α([m]) ∪ {i}}.
5Now antiquated, ∞-categories were originally called weak Kan complexes.
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in all dimensions justify the term ‘∞-groupoid’ for Kan complexes. If S =
Sing•(X) for a topological space X, then S is a Kan complex, since such
inversion of paths up to homotopies which are witnessed by higher paths is
possible within X.

2.1.4. Quasi-categories and stratified spaces. A stratified space, in
its purest form,6 is a topological space X together with a continuous map
s : X → P , called its stratification, to a poset P , called its stratifying poset,
equipped with the Aleksandrov topology, in which downward-closed subsets
are declared closed. The subsets Xp := s−1p ⊆ X are called its strata,7 and Xp

is called lower than Xq, and the latter higher than the former, if p ≤ q. The
length of the longest non-trivial sequence of arrows in P is called its depth.

The standard topological simplex ∆n has a natural stratification over [n],
given by writing it as the n-fold closed cone on a singleton stratified over
the trivial poset. At every iteration of this closed-cone taking, a minimal
object is adjoined to the stratifying poset. We recall this in more detail in
Remark 3.1.10, and will concentrate in the present section on ∆1 ∼= [0, 1]
alone. In this scheme, its stratification s : ∆1 → [1] is given by s(0) = 0 and
s(t) = 1 for t > 0.

A map from sX : X → P to sY : Y → Q is a poset map sf : P → Q and
a continuous map f : X → Y covering sf . Consequently, a stratified path in
X → P , a map (γ, sγ) from ∆1 → [1] to X → P , is an ordinary path γ with
image within at most two strata, sγ(0) and sγ(1), such that

sγ(0) = sX(γ(0)) ≤ sX(γ(t)) = sX(γ(t
′)) = sγ(1)

whenever 0 < t, t′ ≤ 1. Consequently, if sγ(0) ≺ sγ(1) strictly in P , then
there is no inverse stratified path starting at γ(1) and ending at γ(0). The
corresponding version of Sing• that takes stratifications into account and there-
fore contains non-invertible paths will still be a simplicial set, but not a Kan
complex, rather only an ∞-category.

Example 2.1.1. The stratified ‘identity map’ of ∆1 → [1], the pair (id∆1 , id[1]),
is valid but not invertible.

Example 2.1.2. Consider s : R → {0 ≺ −,+} given by s(0) = 0, s(R<0) =
{−} and s(R>0) = {+}. This is an example of a depth-1 stratified space.
The preimages of downward-closed subsets are {0}, R≤0, and R≥0, which
are all closed, so we have a stratified space. Stratified paths can travel from
0 to R<0 or R>0, but there are no stratified paths between R<0 and R>0.
In particular, being-in-the-same-stratified-path-connected-component is not a
transitive relation.

6We concentrate in this section on what are known as poset-stratified spaces. They are, at
least in this work, to the concept of stratified space as quasi-categories are to the concept
of (∞, 1)-category.
7These need not be connected – we do not require strata to be connected in this work.
Sometimes in the literature, the connected components of the Xp are referred to as strata.
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Example 2.1.3. Consider s : R3 → [2] given by s(0) = 0, s(V r {0}) = {1}
where V is a line through the origin, and s(R3 r V ) = 3. The preimage of a
downward-closed subset is either V or R3 and so is closed. This is an example
of a depth-2 stratified space.

If one considers a version of Sing•(X) by asking the simplices to respect
the stratification, then one obtains the simplicial set Exit•(X), which is an
∞-category if X is well-behaved – see Section 1.1 for a brief review and the
references. To conclude this section, we will recall a more combinatorial char-
acterisation of the functoriality involved in the definition of a simplicial set,
which we will use throughout the text for practical purposes, and on which
our own definition of the exit path ∞-category will be explicitly based.

Let S = S• : ∆
op → Set be a simplicial set. There is a special class of

morphisms in ∆, the functoriality of S along which is equivalent to its global
functoriality. They consist of the face maps (which we already mentioned
above) and the degeneracy maps. Collectively, we call them the simplicial
operators.

The face maps are of type
∂i = ∂ni : [n− 1] ↪→ [n]

for i ∈ [n], which is defined to be the unique monotone surjection onto [n]r{i}.
The degeneracy maps are of type

σi = σn : [n+ 1]→ [n]

for i ∈ [n], which is defined to be the unique monotone surjection onto all of
[n] such that σi(i) = σi(i+ 1) = i.

Along S, these maps introduce the maps
di : Sn → Sn−1

and
si : Sn → Sn+1

respectively, which we also call the i’th face map and the i’th degeneracy map.
The datum of S is equivalent the collection (Sn, di, si)n,i such that the

simplicial identities are satisfied, which are listed in the proof of Lemma 3.2.3.
Moreover, a map of simplicial sets is equivalent to a collection degree-wise set
maps that commute with the face and degeneracy maps.

2.2. Basic constructions

Let Cat∆ denote the category of simplicial categories, that is, the category
of categories enriched in sSet. We assume the reader is familiar with the nerve
N(C) = N•(C) ∈ sSet of an ordinary category C.

2.2.1. The homotopy-coherent nerve. We will first recall the simpli-
cial nerve construction ([19], though see also [52, 00KT]), following [51, §1.1.5].
We will then recall its mirror image, the homotopy-coherent nerve, that will
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feature heavily in Chapter 4. Our constructions and results hold, mutatis
mutandis, equally well for either choice.8

Similarly to the Yoneda embedding ∆ ↪→ sSet, [k] 7→ ∆[k], which gives a
simplicial set for each k ∈ N, there exists a functor

C : ∆→ Cat∆.

Definition 2.2.1. We first define C on objects, then on morphisms.
(1) The simplicial category C[k] has the same objects as those of [k], and

the simplicial sets of morphisms in each C[k] are given by
HomC[k](i, j) := N(Pi,j),

where Pi,j, 0 ≤ i, j ≤ k is empty if i > j, and
Pi,j = {I ⊆ {i ≤ a+ 1 ≤ · · · ≤ j} ⊆ [k] : a, b ∈ I}

if i ≤ j. In other words, Pi,j is the poset consisting of the subposets
of [k] that start at i and j, with partial order � given by subset
inclusions.

For each triple i ≤ j ≤ p in [k], there is a map
Pj,p × Pi,j → Pi,p

defined by taking unions. The ordinary nerve functor applied to these
maps yields maps

HomC[k](j, p)× HomC[k](i, j)→ HomC[k](i, p)

of simplicial sets, which is associative since so is taking unions.
(2) A map f : [l] → [k] in ∆ induces a map C[l] → C[k] as follows: on

objects, it is given by [l] 3 i 7→ f(i) ∈ [k], and on the mapping posets
it is given by Pi,j 3 I 7→ f(I) ∈ Pf(i),f(j), applying N to which defines
the map f = Cf : C[l]→ C[k].

Definition 2.2.2. We call the Pi,j mapping posets, and their nerves mapping
spaces.

Definition 2.2.3. The simplicial nerve N∆(D) = N∆
• (D) of a simplicial cat-

egory D is the simplicial set whose set of k-simplices is defined by
N∆
k (D) := HomCat∆(C[k],D).

This is contravariant in [k] via the covariance of C.

In other words, N∆ is the restriction of the Yoneda embedding Cat∆ →
pSh(Cat∆) along C : ∆ → Cat∆. We also write Fun(−,−) to take the set of
functors between the arguments.

Definition 2.2.4. The homotopy-coherent nerve Nhc(D) = Nhc
• (D) of a sim-

plicial category D is the simplicial set whose set of k-simplices is defined by
Nhc(D)k := Fun(Path[k],A),

where Path[k] := C[k]op. We write ≥ for the partial order thereon.
8However, see [46] for a cautionary tale.
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Recall that, for any category C, we have an isomorphism N•(C
op) ∼=

(N•C)
op ([52, 003Q]), where the RHS is the ∞-categorical opposite. Thus,

HomPath[k](i, j) = N(P op
i,j ),

and we keep this superscript ‘op’ throughout. This redundancy is meant to
provide clarity. In [51], Lurie writes P for our P , while in [52] he writes P for
our P op. As an admittedly sub-optimal middle ground, we exclusively work
with Nhc (as in [52]), but we keep the superscript.

Functors of type Path[k]→ A are called k-paths in A.
If D is Kan-enriched, then N∆(D) is an ∞-category by [51, Proposition

1.1.5.10]. The same holds for Nhc(D) by [52, 00LJ]. Both are variants of a
result of Cordier–Porter [20].

2.2.2. Joins and (co)slices. For f : K → C a functor from a simplicial
set to an∞-category, there is ([47], [52, 01GP]) a right fibration C/f → C and
a left fibration f/C → C, whose domains are respectively called the slice and
coslice of C at f . We will recall their definitions, but refer the reader to the
op. cit. for the named lifting properties.

In the following, our convention is that X−1 = ∅ for X• a simplicial set,
and a product is empty if one of its factors is ∅. The following is equivalent
to the more standard definition; see [52, 0234]. It is a simplicial version of
Milnor’s general topological construction from [58].
Definition 2.2.5. The join X ? Y = (X ? Y )• of two simplicial sets X = X•,
Y = Y• is defined by
(X ? Y )k = {(π, f−, f+) : π : ∆[k]→ ∆[1], f− : ∆[k]|0 → X, f+ : ∆[k]|1 → Y },

where π, f−, f+ are maps of simplicial sets, and ∆[k]|i = {i}×∆[1]∆[k], i = 0, 1,
is defined using π. Given φ : [l]→ [k] in ∆, the corresponding φ : ∆[l]→ ∆[k]
defines a map (X ? Y )k → (X ? Y )l by restrictions.
Remark 2.2.6. We have injections

ι0 : X ↪→ X ? Y, ι1 : Y ↪→ X ? Y.

For the former, let f : ∆[k]→ X be a k-simplex of X. Defining
π : ∆[k]→ {0} ↪→ ∆[1]

and setting f− = f , and necessarily f+ : ∅ → Y , gives a map Xk → (X?Y )k. In
the inclusion of Y into X ?Y , π is defined by factoring through the projection
to 1 and setting f− empty instead.
Remark 2.2.7. The join construction is functorial in both arguments. Given
φ : X → X ′, ψ : Y → Y ′, we write φ ?ψ for the induced map X ?Y → X ′ ? Y ′.
Definition 2.2.8. Let K be a simplicial set, C an∞-category, and f : K → C
a map. The slice C/f of C at f is the simplicial set defined by

(C/f)n = (HomsSet)K(∆[n] ? K, C),
where the subscript K indicates that the set in question consists of maps

φ : ∆[n] ? K → C
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whose precomposition
K

ι1
↪→ ∆[n] ? K

φ→ C
is f .

The face and degeneracy maps are given by precomposition and functori-
ality: a map ψ : ∆[m]→ ∆[n] induces a map

∆[m] ? K
ψ?id→ ∆[n] ? K

φ→ C,
which is clearly in (C/f)m, i.e., (φ ◦ (ψ ? id))|K = f . The slice is again an
∞-category.

The projection C/f → C is given by precomposing φ : ∆[n] ? K → C with
∆[n]

ι0
↪→ ∆[n] ? K.

The coslice f/C is defined analogously, with ∆[n]?K replaced by K?∆[n],
ι1 by ι0 and vice versa, throughout. It is again an ∞-category.

Notation 2.2.9. Let ιx : ∆[0]→ C be given by a vertex x ∈ C0. We write
C/x := C/ιx, x/C := ιx/C.

They are respectively called the over- and under-∞-category at x.

Remark 2.2.10. There are canonical isomorphisms
∆[k] ?∆[l] ' ∆[k + 1 + l],

such that the composition

∆[k]
ι0
↪→ ∆[k] ?∆[l]

∼→ ∆[k + 1 + l]

is given by
[k] ↪→ [k + 1 + l], i 7→ i,

and such that the composition

∆[l]
ι1
↪→ ∆[k] ?∆[l]

∼→ ∆[k + 1 + l]

is given by
[l] ↪→ [k + 1 + l], i 7→ k + 1 + i.

Remark 2.2.11. We should explicate the degeneracies in an under-∞-category
x/C. Via Remark 2.2.10, a 0-simplex of x/C is a 1-simplex of C with source x.
Given a 1-simplex

γ : ∆[0] ?∆[1]→ C
of x/C its source and target γ0, γ1, are given, according to Definition 2.2.8, by

γ0 : ∆[0] ?∆[0]
id?0
↪→ ∆[0] ?∆[1]

γ→ C,
and similarly with id ? 1 for γ1. The faces (and degeneracies) of simplices of
all dimensions can be understood analogously: see Lemma 4.3.4.





CHAPTER 3

Linked spaces and exit paths

Let M, L and N be ∞-groupoids. We wish to construct an ∞-category
that interprets L as the space of non-invertible paths from M to N , without
modifying the paths ofM and N , and such that vertices remain exactly those
of M q N . To this end, we first need maps L → M,N , which play the
respective roles of source and target. For the sake of clarity, we separated the
construction into two steps: first we will discuss the ‘space’ of non-invertible
paths, and then adjoin it in a certain way to MqN .

3.1. Exit shuffles

Definition 3.1.1. Let ι : L → N be a map of simplicial sets. We call the
simplicial set P := Pι := L ×N {0} N∆[1] the mapping cocylinder of ι.

Remark. Definition 3.1.1 is a variation on the under-∞-category construc-
tion, and reduces to it if L = pt is the constant singleton, in that there is an
equivalence ι(pt)/N ' pt ×N {0} N∆[1]. Note that otherwise the coslice ι/N
does not model a space of paths starting in L: its simplices, as simplices of N ,
are higher-dimensional than required to begin with. Rather, it is the space of
cocones under ι.

Remark 3.1.2. Recall how the mapping cocylinder appears in classical topo-
logy: in the analogous construction with spaces L,N and ι a continuous map,
the natural map Pι → N is a fibration replacement for ι in view of a homotopy
equivalence L ' Pι.

Remark 3.1.3. There are two induced maps π, τ : P →M,N defined as the
compositions in the diagram

P N∆[1] N {1}

L N {0}

M

π

s

τ

⌜

π

ι

where the map N∆[1] → N {1} is given by precomposition with {1} ×∆[k] ↪→
∆[1]×∆[k].

25
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Ideally, one would adjoin P , using π : L → M, to Mq N as the space
of non-invertible paths from M to N , by employing π, τ of Remark 3.1.3 as
source and target maps, respectively, but P does not lend itself to this directly.
Instead, we will extract data out of it that does. First, let us delineate the
problem in order to motivate the construction to follow.

Remark 3.1.4. A vertex of P is a path of N that starts at a point in ι(L).
One may coherently view this as a path which starts in M, by projecting its
source down toM via σ0, and which, analogously, ends in N via τ . For higher
morphisms, however, a direct generalisation requires unnatural choices: for
instance, a 1-morphism in P may be depicted as

• •

• •
(3.1.5)

where the bottom edge is in ι(L), and the top edge is in N . (We depict
the ∆[1]-coordinate in a k-morphism of N∆[1], i.e., in a map ∆[1] × ∆[k] →
N of simplicial sets, as the upwards vertical coordinate.) Two of the (non-
degenerate) 2-simplices of N we may extract are

•

• •
(3.1.6)

and
• •

•
(3.1.7)

corresponding to the two (1, 1)-shuffles
∆[2] ↪→ ∆[1]×∆[1]

à la Eilenberg–Mac Lane–Zilber [31, 30] (see also [52, 00RF]).1 If we were
to add (3.1.5) as a 2-morphism to MqN , say with source edge the bottom
one, then we would have to choose the hypotenuse of the triangle (3.1.6) as
the target edge, and the vertical edge as the intermediate 12-edge. But we
may equally well make the analogous choice with triangle (3.1.7), declaring
the left vertical edge the source. The problem is that both types of triangles
are required for composition: if we wish later to concatenate, say, a path in
M with a (non-invertible) 1-morphism in P , then we need (assuming there is
a lift to L) a triangle of the first type. Similarly, if we wish to concatenate a
non-invertible 1-morphism with a path in N , we need a triangle of the second
type.

1Triangle (3.1.6) is given by the 2-simplex of ∆[1]×∆[1] defined by ([2]→ [1], [2]→ [1]) =
((0, 1 7→ 0; 2 7→ 1), (0 7→ 0; 1, 2 7→ 1)) in ∆. Triangle (3.1.7) is given by ((0 7→ 0; 1, 2 7→
1), (0, 1 7→ 0; 2 7→ 1)). The hypotenuse in both triangles is the edge

(
[1]

id−→ [1], [1]
id−→ [1]

)
∈

(∆[1]×∆[1])1.
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Construction 3.1.8 (exit shuffles). Any pair 1 ≤ j ≤ k of natural numbers
determines a (1, k − 1)-shuffle Skj = Sj : ∆[k]→ ∆[1]×∆[k − 1] by setting

Sj =



[
0 0 · · · 0 1j 1j+1 1 · · · 1

0 1 · · · j − 1 j − 1 j j + 1 · · · k − 1

]
, j < k[

0 0 0 · · · 0 0 1

0 1 2 · · · k − 2 k − 1 k − 1

]
, j = k

in path notation, where the subscript j indicates the column number, with
column count starting at 0.

This is the non-degenerate element of (∆[1]×∆[k − 1])k induced in ∆ by
the poset map

[k]→ [1]× [k − 1]

given by

i 7→

{
(0, i), i < j

(1, i− 1), i ≥ j.

We call Sj an exit shuffle, and j its exit index.2 It has multiple left inverses,
but we will use a particular one, Ckj = Cj, defined to be postcomposition with
the poset map

[1]× [k − 1]→ [k]

given by

(0, i) 7→

{
i, i < j

j − 1, i ≥ j
, (1, i) 7→

{
j, i < j

i+ 1, i ≥ j
.

This choice for C is justified by results below such as Lemmas 3.1.13 and 3.1.14.

Definition 3.1.9. Let ι : L → N be a map of simplicial sets. For k ≥ 1, we
define

P∆
k−1 ⊂ Nk × {1, . . . , k}

to be the subset consisting of pairs (γ, j) such that in the diagram

∆[k] N

∆[1]×∆[k − 1]
Sj

γ

Cj

Γ=γ◦Cj

the arrow Γ lifts to the mapping cocylinder, i.e., it is in the image of the natural
map P → N∆[1]. We call a pair (γ, j) ∈ P∆

∗ an exit path of index j.

One can think of Γ = γ ◦ Cj as a scaffolding around γ that gives it shape
and direction. We will differentiate its three parts – its base, its ladders, and
its top – as they relate to γ in Definition 3.1.11.

2Exit shuffles are exactly the non-degerate simplices of ∆[1] ×∆[k] of maximal dimension,
k + 1.
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Remark 3.1.10 (exit indices at depth 1). In terms of ordinary stratified geo-
metry, Construction 3.1.8 corresponds to the following phenomenon: a strat-
ified k-simplex or k-chain ∆k → X of X is a map of stratified spaces, where
∆k = C

k
(pt) is the k-fold closed cone on the point. The closed cone C(Y ) of a

stratified space Y → P = PY , where P is the stratifying poset (equipped with
the Alexandrov topology so that downward-closed subsets are closed) has

pt
∐

{0}×Y

[0, 1]× Y

as its underlying space, and
PC(Y ) = P/Y ,

i.e., PY with a minimal element adjoined, as its stratifying poset, together
with the obvious stratification C(Y )→ P/Y . Now, the stratified map ∆k → X
comes with a commutative topological square

∆k X

P∆k PX

f

sf

.

Clearly we have P∆k ' [k] as posets. If
PX ' {a ≺ b},

then the poset map sf is determined by a unique minimal ‘exit index’ j ∈ [k].
Namely, let j = 0 if sf is constant, or else let j be the smallest number such
that

sf (j − 1 ≺ j) = a ≺ b,

referring to sf applied to an arrow. This is well-defined since [k] is connected.
As we do not refer to stratified paths explicitly, however, the different levels
(indices) at which a path may exit (from the stratum Xa) give for us different
sorts of non-invertible paths. Note also that we do not consider exit shuffles
of index 0, as the corresponding k-chains are competely contained within the
smooth manifold Xb, and similarly we do not consider ‘j = k + 1’, i.e., paths
contained within Xa. (Besides, these indices do not determine shuffles in the
ordinary sense.) This analogy suggests a natural, albeit notationally heavy,
generalisation, using multiple exit indices, of the depth-1 Construction 3.1.8
to higher depth, but we will not pursue this here.

The aim of Definition 3.1.9 is three-fold.
• It helps group elements of P∆

∗ into three classes (Definition 3.1.11),
which will play different roles.
• It ‘fixes orientation’, in the sense that the faces of γ that touch L

are directed away from L due to the orientation of the accompanying
Γ ∈ P∗. This precludes ‘paths from N toM’, a.k.a. enter paths. The
orientation depends on the exit index, so:
• Unequal pairs (γ, j) 6= (γ, j ′) ∈ P∆

∗ that share their first coordinate
play different roles, and this is indispensable.
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Definition 3.1.11. Let k ≥ 1, (γ, j) ∈ P∆
k−1, and let di = ∂∗i be a face map.

Then di(γ) is either
• or low if it factors as follows:

∆[k − 1] ∆[k] N

{0} ×∆[k − 1] ∆[1]×∆[k − 1]

∃

∂i

Sj

γ

Γ=γ◦Cj
;

• vertical if it does not factor as follows:

∆[k − 1] ∆[k]

({0} q {1})×∆[k − 1] ∆[1]×∆[k − 1]

@

∂i

Sj
;

• or upper if it factors as follows:

∆[k − 1] ∆[k]

{1} ×∆[k − 1] ∆[1]×∆[k − 1]

∃

∂i

Sj
.

In the exit path ∞-category of Definition 3.2.2 below, vertical paths will
remain non-invertible, low faces will become simplices in M, and upper faces
in N . Writing ‘di(γ) is vertical’, etc., is slightly abusive, since whether a face
is vertical, low or upper depends on (and in fact only on) the exit index. This
should not cause any confusion because we do not use these adjectives in any
other context. We have adopted ‘low’ and ‘upper’ from [32], where they were
used in a similar context.
Definition 3.1.12. Let k ≥ 1. For ∂i and Sj as in Definition 3.1.11, and for
σi a degeneracy, we write

[kj,i = [j,i ∈ [k − 1] (resp. ]kj,i = ]j,i ∈ [k])
for the smallest number whose image under
Sj∂i : [k − 1]→ [1]× [k − 1] (resp. under Sjσi : [k + 1]→ [1]× [k − 1])

has first coordinate 1. We leave [kk,k undefined.

For instance, for k = 5, j = 2, i ≥ 2, we have [ = 2, but for i < 2 (with
k, j unchanged), we have [ = 1; in general [ ∈ {j, j − 1}, depending on the
relative positions of i and j in {0, . . . , k}. We will note explicit formulas for [
and ] in the proof of Lemma 3.2.3: see (3.2.6) and (3.2.10). Their derivation
is left as an exercise.
Lemma 3.1.13.

• Let k ≥ 2 and assume (j, i) 6= (k, k). The composition

∆[1]×∆[k − 2] ∆[k − 1] ∆[k] ∆[1]×∆[k − 1],
C[ ∂i Sj
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where [ = [kj,i, preserves the first coordinate.
• The composition

∆[1]×∆[k] ∆[k + 1] ∆[k] ∆[1]×∆[k − 1],
C] σi Sj

where ] = ]kj,i, preserves the first coordinate.

Proof. This is a direct check. □

Lemma 3.1.14. Let k ≥ 2. If (γ, j) ∈ P∆
k−1 and di(γ) is vertical, then

di(γ, j) :=
(
diγ, [

k
j,i

)
∈ P∆

k−2.

To illustrate, for k = 3,
•

• •

•

• •

(3.1.15)

is a vertical face of exit index [ = 2 = j−1, where (γ, 3) itself, the ‘lower right’
tetrahedron, is omitted. Similarly,

•

• •

•

• •

(3.1.16)

is a vertical face of index [ = 1 = j, where (γ, 1) is the upper left tetrahedron.3

Proof of Lemma 3.1.14. It suffices to consider the diagram

∆[k − 1] ∆[k] N

∆[1]×∆[k − 1]

∆[1]×∆[k − 2]

S[

∂i

Sj

γ

Cj
Γ

C[

d′
Γ′

, (3.1.17)

which commutes by construction. Lemma 3.1.13 implies in particular that the
restriction of d′ = Si∂iC to {0}×∆[k − 2] factors through {0}×∆[k − 1], which
implies that Γ′ = Γd′ lifts to Pk−2, as desired. Note that the case j = i = k is
precluded by verticality. □

3In these pictures, the boundary triangles of the prisms are oriented clockwise.
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Remark 3.1.18. Lemma 3.1.14 does not promote to an if-and-only-if state-
ment. Low faces also descend to P∆

k−2, but in a different way. Upper faces may
or may not. These facts will play no role below.

We close this section by noting the completely analogous fact for degen-
eracies.

Lemma 3.1.19. Let k ≥ 1. If (γ, j) ∈ P∆
k−1, then si(γ, j) :=

(
siγ, ]

k
j,i

)
∈ P∆

k .

3.2. Exit paths

Remark 3.2.1. If ι : L ↪→ N is a cofibration, then an exit path (γ, j) ∈ P∆
k−1

determines a canonical (k − 1)-simplex ∆[k − 1] → L of L, namely (recall
Definition 3.1.9) the restriction of Γ = γ ◦ Cj along {0} ×∆[k − 1] ↪→ ∆[1] ×
∆[k − 1] factors then uniquely through L.

We are now ready to give one of the main constructions of this dissertation.

Definition 3.2.2. Let a span

S =
(
M π←− L ι

↪−→ N
)

of simplicial sets be given, where ι is a cofibration. We define a new simplicial
set, EX = EX (S), as follows:

• EX 0 =M0 qN0.
• EX k =Mk q P∆

k−1 qNk for k ≥ 1.
• Face and degeneracy maps restricted to Mk and Nk are those of M

and N .
• For k = 1 and γ = (γ, 1) ∈ P∆

0 ⊂ N1, we set4

d1(γ, 1) = π(d1γ) ∈M0,

d0(γ, 1) = τ(d0γ) ∈ N0.

• For k ≥ 2, (γ, j) ∈ P∆
k−1, and di a face map:

– if diγ is vertical,5 then we set di(γ, j) =
(
diγ, [j,i ∈ P∆

k−2

)
.6

– if diγ is low, then we set di(γ, j) = π(diγ) ∈Mk−1.
– if diγ is upper, then we set di(γ, j) = τ(diγ) ∈ Nk−1.

• For k ≥ 1, (γ, j) ∈ P∆
k−1, and si a degeneracy: si(γ, j) := (siγ, ]j,i) ∈

P∆
k .7

Lemma 3.2.3. EX (S) is a simplicial set.

Proof. We will verify the simplicial identities. Below, we assume k ≥ 2
or k ≥ 3 depending on applicability, and that (γ, e) ∈ P∆

k−1. For completeness,
we have included a proof for the case k = 1 at the end, though it is better
considered an exercise.
4(noting S = id, C = id if k = 1 (Construction 3.1.8), and using Remarks 3.1.3 and 3.2.1)
5(Definition 3.1.11)
6(Lemma 3.1.14)
7(Lemma 3.1.19)
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didj = dj−1di for i < j: We start by showing that

[k−1
[ke,j ,i

= [k−1
[ke,i,j−1

. (3.2.4)

It helps to distinguish the cases
(1) e ≤ i < j, (2) i < e ≤ j, and (3) i < j < e. (3.2.5)

We have (by a direct check)

[ke,j =

{
e, j ≥ e

e− 1, j < e
(3.2.6)

and thus if (1), then L := [k−1
[ke,j ,i

= [k−1
e,i = e and R := [k−1

[ke,i,j−1
= [k−1

e,j−1 = e. If
(2), then L = [k−1

e,i = e − 1 and R = [k−1
e−1,j−1 = e − 1. Finally, if (3), then

L = [k−1
e−1,i = e − 2 and R = [k−1

e−1,j−1 = e − 2. We should note that in the case
(2), e is at least 1, and in (3) it is at least 2, so that the expressions make
sense.

This finishes the verification if all involved faces of (γ, e) are vertical. Oth-
erwise, Lemma 3.1.13 and Diagram (3.1.17) imply the statement; in any of
the cases where the case excluded in Lemma 3.1.13 is involved, the face in
question is low. We will give this argument here once and will not repeat it in
the verification of the other simplicial identities below.

Consider the diagram

∆[k − 2] ∆[k − 1] ∆[k] N

∆[1]×∆[k − 3] ∆[1]×∆[k − 2] ∆[1]×∆[k − 1]

S[′

∂i

S[

∂j

Se

γ

C[′ C[ Ce .

(3.2.7)
Without loss of generality, say di(dj(γ)) = (∂j∂i)

∗γ is low, so we need to show
that so is dj−1di(γ). That S[∂i factors through {0} × ∆[k − 2] is equivalent
to Se∂jC[S[∂i factoring thusly by Lemma 3.1.13. Now, Se∂jC[S[∂i = Se∂j∂i by
the construction of C[, and similarly Se∂j∂i = Se∂j∂iC[′S[′ . Together with the
same calculation for ∂i and ∂j replaced respectively by ∂j−1 and ∂i in Diagram
(3.2.7), we see that
Se∂jC[S[∂i = Se∂j∂iC[′S[′ and Se∂iC[S[∂j−1 = Se∂i∂j−1C[′S[′ . (3.2.8)

The indices [(′) in the two equations are a priori not the same (as they are
calculated for different pairs of indices themselves), but we just showed above
in Equation (3.2.4) that the primed flats on the right hand sides do coincide.
Combined with the same simplicial identity for N , this means that the right
hand sides in (3.2.8) agree, which implies the statement.
disj = sj−1di for i < j: Similarly, we first show

L = [k−1
]ke,j ,i

= ]k−1
[ke,i,j−1

= R, (3.2.9)
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using the cases (1)–(3) from (3.2.5). Note that

]ke,j =

{
e, j ≥ e

e+ 1, j < e
(3.2.10)

which, together with (3.2.6), implies that if (1), then L = [k−1
e,i = e and R =

]k−1
e,j−1 = e. If (2), then L = [k−1

e,i = e − 1 and R = ]k−1
e−1,j−1 = e − 1. Finally,

if (3), then L = [k−1
e+1,i = e and R = ]k−1

e−1,j−1 = e. Now, Lemma 3.1.13 and
Diagrams (3.1.17) and (3.2.7) (mutatis mutandis; e.g., using (3.2.9) instead of
(3.2.4) for (3.2.8)) again finish the verification, analogously to the above. We
no longer mention this below.
disj = id for i = j or i = j + 1: We show

L = [k−1
]ke,j ,i

= e.

If e ≤ j, then L = [k−1
e,i = e. If i = j and j < e, then L = [k−1

e+1,i = e. If i = j+1

and e ≥ i, then L = [k−1
e+1,i = e. This covers all cases.

disj = sjdi−1 for i > j + 1: We show

L = [k−1
]ke,j ,i

= ]k−1
[ke,i−1,j

= R.

If e ≤ j, then L = [k−1
e,i = e = ]k−1

e,j = R. If j + 1 ≤ e < i − 1, then
L = [k−1

e+1,i = e = ]k−1
e−1,j = R. If e = i− 1, then L = [k−1

e+1,i = e+1 = ]k−1
e,j = R. If

e = i, then L = [k−1
e+1,i = e = ]k−1

e−1,j = R. Finally, if e > i, both sides are again
equal to e.
sisj = sj+1si for i ≤ j: Finally, we show

L = ]k−1
]ke,j ,i

= ]k−1
]ke,i,j+1

= R.

Similarly to the first identity above, it helps to distinguish the cases
(1) e ≤ i ≤ j, (2) i < e ≤ j, and (3) i ≤ j < e.

If (1), then L = ]k−1
e,i = e = ]k−1

e,j+1 = R. If (2), then L = ]k−1
e,i = e + 1 =

]k−1
e+1,j+1 = R. If (3), then L = ]k−1

e+1,i = e+ 2 = ]k−1
e+1,j+1 = R.

The case k = 1: Here, we necessarily have e = 1. The first simplicial identity
(in the order presented above) is not applicable for dimension reasons. For the
second, the only applicable case is i = 0, j = 1. Then we have d0s1(γ, 1) =
d0(s1γ, ]1,1) = d0(s1γ, 1). This face is upper, so

d0s1(γ, 1) = d0s1γ = s0d0γ.

On the other hand, d0(γ, 1) is also upper, so
s0d0(γ, 1) = s0d0γ

as well. For the third identity, the only applicable cases are i = 0, 1, 2. If i = 0,
then d0s0(γ, 1) = d0(s0γ, ]1,0) = d0(s0γ, 2). This face is vertical, so

d0s0(γ, 1) = (d0s0, [2,0) = (d0s0γ, 1) = (γ, 1),
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as desired. If i = 1, similarly d1s0(γ, 1) = (d1s0γ, [2,1) = (γ, 1) by verticality.
If i = 2, again d2s1(γ, 1) = (d2s1γ, []1,1,2) = (γ, 1) by verticality. For the fourth
identity, the only applicaple case is i = 2, j = 0. Then, on one hand, we have
d2s0(γ, 1) = d2(s0γ, 2) = π(d2s0γ) since the d2-face is here low, and on the
other hand, we have that d1(γ, 1) is also low, so

s0d1(γ, 1) = s0π(d1γ) = π(s0d1γ) = π(d2s0γ),

as desired. The fifth and last identity accepts the general treatment we gave
above, since at each step the simplex remains vertical by construction. □

Theorem 3.2.11. If M,L,N are ∞-categories, π : L → M is a right fibra-
tion, and ι : L → N is a cofibration, then EX

(
M π←− L ι−→ N

)
is an ∞-

category.

Proof. We directly check the weak Kan property, first giving a verbose
proof for inner 2- and 3-horns before the general case, which is analogous. The
main idea is that given a horn with non-invertible faces, we can lift those in
M to N along π and take a filler therein, which, coupled with an appropriate
exit index, lifts the original horn. We will sometimes not distinguish L from
its image ι(L) in notation.
2-horns. Let h : Λ2

1 → EX be given. The only two non-trivial cases occur when
at least one of the edges

h|ij : {i < j} = ∆[1] ↪→ Λ2
1
h−→ EX

that constitute the horn lies in P∆
0 . (See Footnote 8 concerning the notation.)

(1) First, say
h|01 = (h01, 1) ∈ P∆

0 .

Then we have h|12 ∈ N1 as by construction the endpoint d0(h|01) =
τ(d0h01), which must be the initial point of h|12, lies in N0. Now the
horn

h01 ∪ h|12 : Λ2
1 → N

has a filler H : ∆[2]→ N . But then (H, 1) ∈ P∆
1 fills h: the composi-

tion S1 ◦ ∂0 : [1] ↪→ [2] ↪→ [1] × [1] is 0 7→ 1 7→ (1, 0), 1 7→ 2 7→ (1, 1)
which means d0H is upper, so that

d0(H, 1) = d0H = h|12 ∈ N1.

Similarly, S1 ◦ ∂2(0) = S1(0) = (0, 0), S1 ◦ ∂2(1) = S1(1) = (1, 0) so
that d2H is vertical, yielding

d2(H, 1) = (d2H, [1,2) = (h01, 1) ∈ P∆
0

using (3.2.6). This shows that (H, 1) is a filler for h.
(2) Let us assume, more interestingly, that

h|12 = (h12, 1) ∈ P∆
0 .

Necessarily, h|01 ∈M1, as the initial point d1(h|12) = π(d1h12), which
must coincide with the endpoint of h|01, is by construction in M0.
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The induced lifting problem

{1} = Λ1
0 L

∆[1] M

d1h12

π

h|01

H01

admits by assumption a solution H01. We thus have an induced horn
ι(H01) ∪ h12 : Λ2

1 → N
with a filler H ∈ N2. But now (H, 2) ∈ P∆

1 fills h: we have that d0H
is vertical as S2 ◦ ∂0 : [1]→ [1]× [1] sends 0 7→ (0, 1); 1 7→ (1, 1), so

d0(H, 2) = (d0H, [2,0) = (h12, 1) ∈ P∆
0 .

Similarly, S2 ◦ ∂2 : 0 7→ (0, 0); 1 7→ (0, 1) means d2H is low and so
d2(H, 2) = π(d2H) = π(H01) = h|01 ∈M1.

This shows that (H, 2) is a filler for h.

3-horns. Let first
h : Λ3

1 → EX
be given, which misses the 023-face. The non-trivial cases to check occur when
h is not wholly contained within M or N . Suppose

(1) that the 013-face
h|013 : ∆[2] = {0 < 1 < 3} ↪→ Λ3

1 → EX
is inM2.8 Then if any other non-degenerate sub-2-simplex of h is also
low,9 so must all others, which would yield a non-case as h would lie
entirely withinM. But since no other sub-2-simplex of h can be upper
while h|013 is low, we may assume that all other non-degenerate sub-2-
simplices of h are vertical. Now, h|123 = (h, e′) ∈ P∆

1 must be vertical
with the 03-edge, common with the assumed low face h|013, itself
necessarily low. But then the vertex h|2 ∈ N0 must be upper, which
is absurd since there is no exit index e′ ∈ {1, 2} such that the exit
shuffle Se′ : [2]→ [1]× [1] sends 0, 3 to {0}× [1] while simultaneously
sending 2 to {1} × [1]: 2 < 3 in [2] implies Se′(2) < Se′(3) in [1]× [1].
We conclude that h|013 cannot be in M2 if h is not already wholly
within M. So, this is a non-case.

(2) that the 123-face
h|123 : ∆[2] = {1 < 2 < 3} ↪→ Λ3

1 → EX

8We will continue using slightly abusive notation like ∆[2] = {0 < 1 < 3} which is similar
to ∆[2] = ∆{0 < 1 < 3} or ∆{0<1<3} since it is suggestive, commonplace, and should cause
no confusion.
9We call a sub-simplex (∆[`] ↪→ Λk

i → EX ) ∈ EX k−1, 1 ≤ ` < k of a horn low if it is inMℓ,
vertical if in P∆

ℓ−1, and upper if in Nℓ. Similarly when ` = 0 with low/upper.
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is in M2. All other 2-faces being vertical similarly implies that the
vertex h|0 is upper, which gives a contradiction in the same way. We
conclude that this is also a non-case.

(3) that the 012-face
h|012 : ∆[2] = {0 < 1 < 2} ↪→ Λ3

1 → EX
is inM2. We may similarly assume all other 2-faces are vertical, and
so in particular h|3 upper, which here does not give a contradiction
as 3 ∈ Λ3

1 ⊂ ∆[3] is final. We obtain that h|013 = (h013, 2), h|123 =
(h123, 2) ∈ P∆

1 both have exit index 2, as they have a single low edge
each (the 01- and 12-edges, respectively). Now, we have an induced
horn in L given by h|01 ∪ h|12 : Λ2

1 → L, which constitutes the lifting
problem

Λ2
1 L

∆[2] M

h01∪h12

πH012

h|012

which admits a solution H012. This yields an induced horn
H012 ∪ h013 ∪ h123 : Λ3

1 → N
which admits a filler H. Now, (H, 3) ∈ P∆

2 fills h: the face d3H is low
since

S3 ◦ ∂3 : [2] ↪→ [3] ↪→ [1]× [2]

sends i 7→ (0, i), which implies
d3(H, 3) = π(d3H) = π(H012) = h|012,

as desired. The remaining faces diH, i 6= 3, are vertical since S3 ◦ ∂i
sends 0 7→ (0, 0) while 3 7→ (1, 2). By construction we have

d0(H, 3) = (d0H, [3,0) = (h123, 2) = h|123
and similarly d1(H, 3) = h|123, d2(H, 3) = h|013, using [3,i = 2, as
desired.

(4) that h has an upper 2-face. Similarly to the above, we may argue
that it cannot have a low 2-face, and if it had any other upper 2-face,
it would be contained entirely within N where the lifting problem
is trivial, and so we may assume that the remaining 2-faces are all
vertical. Again similarly to the above, we have that the only non-
non-case is when the 123-face

h|123 : ∆[2] = {1 < 2 < 3} ↪→ Λ3
1 → EX

is upper as the other cases contradict the partial order on [1] × [2];
in particular, the vertex h|0 is low. Moreover, any vertical 2-face of h
must have exit index 1 for otherwise it would have a low edge, which
is impossible as there is only a single low vertex. Now, h is in this
case given by a horn

h012 ∪ h013 ∪ h123 = h̃ : Λ3
1 → N



3.2. EXIT PATHS 37

with h̃|0 in ι(L). Taking a filler H of h̃ in N , we see that (H, 1) fills h:
the faces d1/2/3H are vertical since S1 : [3]→ [1]× [2] sends 0 7→ (0, 0);
1 ≤ i 7→ (1, i− 1), which means

di(H, 1) = (diH, [1,i) = (diH, 1),

for i ≥ 1, as desired. On the other hand, S1 ◦ ∂0 has image inside
{1} × [2], so d0H is top. We obtain

d0(H, 1) = τ(d0H) = h|123 ∈ N2,

as desired.
(5) finally that all 2-faces of h are vertical. Let us rule out a few pos-

sibilities by yet more pigeon-holing arguments: the presence of three
(out of the four in total) low resp. upper vertices implies that there is
a low resp. upper face, which means we must have two low and two
upper vertices each. Now, h|0 and h|1 must be low, and h|2 and h|3
upper. For if h|0 were upper and h|i (i ≥ 1) low, the edge h|0i would
be a path N →M, which is excluded by construction, and similarly
if h|1 were upper, taking i ≥ 2. Therefore, the 2-faces

h|012, h|013,
namely those that contain both h|0 and h|1, have exit index 2, while
those which contain only one low vertex have index 1. Of latter type
there is only one:

h|123.
Although h|023 is missing, it would have had to have index 1 by the
same argument. Therefore, adopting the notation from Case (4), we
may take a lift H : ∆[3]→ N of h̃ : Λ3

1 → N such that the restriction
to {0}×∆[2] of the composition H ◦C2 : ∆[1]×∆[2]→ N still factors
through L, independently of the choice of H. Indeed, (H, 2) ∈ P∆

2

fills h: since [2,2/3 = 2 and [2,0/1 = 1, we have d2/3(H, 2) = h|013/012,
d0(H, 2) = h|123. Note also that the exit index being 2 excludes low
or upper faces in this dimension.

Let now
h : Λ3

2 → EX
be given, which misses the 013-face. The non-trivial cases occur when

(1) h has a low face. As in the case of a 1st 3-horn, we may exclude
all cases except the one where the low face is h|012 ∈ M2 and all
other 2-faces are again necessarily vertical, with sole upper vertex
h|3. Now, the faces h|123, h|023 ∈ P∆

1 necessarily have exit index 2,
h|ijk = (hijk, 2), and their source edges h12, h02 ∈ L1 lift two edges of
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the low face – that is, we have an intermediate lifting problem of type

Λ2
2 L

∆[2] M

h12∪h02

πH012

h|012

with solution H012. (This is the first case where we see that it is not
enough for π to merely be an inner fibration.) This yields a horn

H012 ∪ h023 ∪ h123 : Λ3
2 → N ,

which admits a filler H ∈ N . We observe that the restriction to
{0}×∆[2] of H ◦C3 : ∆[1]×∆[2]→ N , which is precisely H012, factors
through L by construction. Indeed, (H, 3) fills h: S3◦∂3 : [2]→ [1]×[2]
sends i 7→ (0, i), so d3H = H012 is low:

d3(H, 3) = π(H012) = h|012 ∈M2,

as desired. In contrast, S3 ◦ ∂i for any i < 3 clearly hits both (0,−)
and (1,−) and so d0/1/2H are vertical. Using [3,i = 2 for i < 3, we see

di(H, 3) = (h0...̂i...3, 2) = h|0...̂i...3,
as desired.

(2) h has an upper face. Analogously, we can assume that the upper face
is h|123 ∈ N whence we have that the sole low vertex is h|0 and that
all other faces are vertical with exit index necessarily 1. Exactly like
in Case (4) above, we have a horn

ĥ : Λ3
2 → EX

with h̃|0 in ι(L), and with filler, say, H ∈ N3. We observe that (H, 1)
again fills h. The check is exactly as in said Case.

(3) all faces of h are vertical. Analogously to Case (5) above,
h|012,

necessarily has exit index 2, and
h|123, h|023

have exit index 1. The missing face h|013 would have had to have
index 2 by the same argument. We may thus choose a filler H ∈ N3

of h̃ : Λ3
2 → N and analogously observe that (H, 2) ∈ P∆

2 fills h.

Horns of arbitrary dimension. Let
h : Λni → EX

be given, with 0 < i < n. We will adopt the notation and results from the
cases of inner 2- and 3-horns treated above. Suppose

(1) h has a low face, which is necessarily h|0...n−1 ∈Mn−1; w.l.o.g., h|n ∈
N0 is the sole upper vertex, and all other faces are vertical. Let us
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write h|ĵ for
h|0...̂j...n = h ◦ ∂j : ∆[n− 1]→ EX

when that makes sense (j 6= i). We have that each vertical face
h|k̂ ∈ P

∆
n−2 ⊂ EX n−1, i 6= k < n

has the (n− 2)-face h|k̂n̂ in common with the low h|n̂, which therefore
gives a lift

hk̂n̂ ∈ Ln−2

to L thereof, where we wrote
h|k̂ = (hk̂, e)

and (hk̂)n̂ = ι(hk̂n̂). As each h|k̂ itself has a low face, its exit index is
necessarily maximal, i.e.,

e = n− 1.

Now, we obtain the intermediate lifting problem

Λn−1
i L

∆[n− 1] M

⋃
i ̸=k∈[n−1] h|k̂n̂

πHn̂

h|n̂

(3.2.12)

with solution Hn̂. (It is imperative here that π be a right fibration
and not just an inner one, since i = n− 1 is allowed.) This yields the
horn

ι(Hn̂) ∪
⋃

i 6=k∈[n−1]

ι(h|k̂n̂) : Λ
n
i → N

which has a filler H ∈ Nn.
In fact, (H,n) fills h: the restriction of

H ◦ Cn : ∆[1]×∆[n− 1]→ N
to {0}×∆[2] is ι(Hn̂), which factors through L by construction. Fur-
ther,

Sn ◦ ∂n : [n− 1]→ [1]× [n− 1]

sends n > j 7→ (0, j), so dnH is low, whence
dn(H,n) = π(Hn̂) = h|n̂,

as desired. Further, when k < n, we have Sn ◦ ∂j hitting both {0} ×
[n− 1] and {1} × [n− 1], so each dkH is vertical. Using [n,k = n− 1
for k < n, we have

dk(H,n) = (hk̂, n− 1) = h|k̂,
also as desired.

(2) h has an upper face, which is necessarily h|0̂ ∈ Nn−1; w.l.o.g., h|0 ∈
M0 is the sole low vertex, and all other faces h|k̂ = (hk̂, 1) ∈ P∆

n−2 are
vertical with exit index necessarily minimal.
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Now, h is given by a horn h̃ : Λni → N with h̃|0 ∈ ι(L0). Taking a
filler H of h̃, we see that (H, 1) fills h: the restriction of C1 : [1]× [n−
1] → [n] to {0} × [n − 1] hits only 0, so H ◦ C1 factors through the
mapping cocylinder P by construction, independently of the choice of
filler H. Further, S1 : [n]→ [1]× [n− 1] sends only 0 to {0} × [n− 1]
while S1 ◦ ∂0 factors through {1}× [n− 1]. This means d0H is upper,
so

d0(H, 1) = h|0̂,
as desired, and finally

dk(H, 1) = (dkH, [1,k) = (hk̂, 1) = h|k̂
for every k ≥ 1, also as desired.

(3) all faces of h are vertical. Then h|0 ∈M0 is low and h|n ∈ N0 upper,
and moreover there must exist an index 1 ≤ e ≤ n such that

h|j ∈M0 for j < e and h|j ∈ N0 for j ≥ e

(we had e = 2 for 3-horns of both varieties discussed above) for oth-
erwise there would exist a pair 0 < j < j′ < n such that h|j ∈ N0

while h|j′ ∈M0, which is absurd since the edge h|jj′ would be of type
N →M. Moreover, e = 1 resp. e = n are impossible, since then h|0̂
resp. h|n̂ would be low resp. upper. We have obtained

1 < e < n.

(There is no 2-horn both of whose faces are vertical, so we may assume
n ≥ 3.) Now, we claim that the exit indices of the faces h|ĵ ∈ P∆

n−2,
j 6= i, are determined by this e:

h|ĵ =

{
(hĵ, e), j ≥ e,

(hĵ, e− 1), j < e.
(3.2.13)

Indeed, that
Cn−1
` ({0} × [n− 2]) = {0, . . . , `− 1}

for any 1 ≤ ` ≤ n − 1 implies that if j ≥ e, then hĵ ◦ Cn−1
e factors

through P , as does h|ĵ ◦ C
n−1
e−1 if j < e. Conversely, suppose h|ĵ has

index e′: (h|ĵ)|0,...,e−1 must be low, which implies, by the definition of
Se′ , that e′ ≥ e, and since there are no further low vertices, we have
e′ ≤ e.

Now, as h induces (or is rather underlied by) a horn h̃ : Λni → N ,
we may choose a filler H ∈ N3 and claim that (H, e) in turn is a filler
for h. In order to ensure that H ◦ Ce : ∆[1] × ∆[n − 1] → N factors
through P , it suffices to observe that the missing face h|̂i cannot be
low, for then the choice of filler H does not affect the factorisation
property (in that h̃ needs filling only away from ι(L)). Indeed, the
only such case would be when i = n, but h is inner.
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Finally, we check the exit indices of the faces ofH: since 1 < e < n,
no face of H is low or upper, and (3.2.6) implies dj(H, e) = h|ĵ due to
(3.2.13), as desired. □

Definition 3.2.14. We call a span M π←− L ι−→ N of ∞-groupoids resp. ∞-
categories, with π a Kan resp. right fibration, and ι a cofibration, a linked
∞-groupoid or linked space resp. linked ∞-category, of depth 1. We call EX
its exit path ∞-category.

We will obtain compatibility with [6, Lemma 3.3.5] in Section 3.3.10 Since
the definition of the exit path∞-category in [6] coincides, by [6, Lemma 3.3.9]
with the Lurie–MacPherson model of [50, App. A] up to equivalence, this will
lift to a statement about the Lurie–MacPherson model as well. Let us first
briefly discuss how some classical examples fit into this setting. They will be
of central importance.

Example 3.2.15 (Bordisms). Since we only explicitly treated depth 1, we
restrict ourselves to manifolds with boundary, but the higher-depth treatment
of corners is analogous. The linked space corresponding to a (smooth) manifold
with boundary (M,∂M) has lower stratum ∂M , higher stratum M◦ =M\∂M ,
link L = ∂M , π = id∂M , and ι : ∂M ↪→M◦ given by the flow along a nowhere-
vanishing inward-pointing vector field along the boundary for a chosen nonzero
time. An equivalent way to pick ι is to consider a tubular neighbourhood of
the boundary diffeomorphic (via such a vector field) to ∂M × [0, 1) ↪→ M ,
whose restriction ∂M × (0, 1) ↪→ M◦ to positive time hits the interior, and
take ι to be the restriction to ∂M × {1

2
}.

Example 3.2.16 (Defects). With a smooth submanifold Σ ⊂ M of positive
codimension we may associate a nontrivial linked space with lower stratum Σ
and higher stratum M \ Σ. The link is given by SN(Σ), the sphere bundle of
the normal bundle of Σ, with the obvious maps π and ι. For instance, the link
of R ⊂ R3 is the open (infinite) cylinder S1×R, whereas the link of S1 ⊂ R3

is a torus.

Example 3.2.17 (Depth-1 stratified Grassmannians). For n, k ∈ N, consider
the span

BO(n)× BO(k)

BO(n) BO(n+ k)

π ⊕

where π is the coordinate projection and ⊕ is induced by direct-summing
of vector spaces and the choice of a pairing function (bijection) N × N ∼=
N. This gives sub-∞-categories of the quasi-category model of the stratified
Grassmannian of [7] given in Chapter 4.11 A higher-depth treatment ought to
reconstruct the full ∞-category, but we leave this to future work.
10It is clear from the construction that EX≃ 'MqN is the maximal sub-∞-groupoid.
11We slightly deviated from the map ⊕ used in Chapter 4 by using a pairing function, but
only up to an equivalence induced by it.
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Any Kan/right fibration π alone, or any cofibration ι alone gives an example
with a trivial choice for the other leg: the identity cofibration or the final
fibration to the point:

M π←− L =−→ L
or

∗ ← L ι−→ N .
Any ∞-category X gives a linked ∞-category

∅ ← ∅ → X
with EX (∅ ← ∅ → X ) ' X . The other trivial construction

∗ ← X =−→ X
corresponds to taking the open cone of X – literally in the ordinary stratified
setting for X = Exit(X), recalling that Exit(C(X)) ' Exit(X)/ – in that

∗ ∈ EX
(
∗ ← X =−→ X

)
' X /

is initial. We prove this in Corollary 3.3.3.

3.3. Linked morphism spaces

Notation. Given an embedding ι : Σ ↪→ N and a point q ∈ N , we let
P (N)Σ,q = PΣ,q denote the space of paths in N that start in ι(Σ) and end
in the point q, equipped with the compact-open topology. We use analogous
notation when we work with a cofibration ι of simplicial sets.

The following result formalises and confirms the intuition that the link rep-
resents an infinitesimal expansion of the lower stratum into the higher stratum.
More precisely, it is a pointwise version of that sentiment. The proof is con-
tained, in essence, in the proof of Theorem 3.2.11, but we will extract it to
make an indepedent reading possible.

Theorem 3.3.1. Let S =
(
M π←− L ι−→ N

)
be a linked ∞-category, and p ∈

M and q ∈ N points in the two strata. We then have an equivalence
HomEX (S)(p, q) ' PLp,q

between the morphism space in EX from p to q and that of paths in N that
start in the embedded fibre ι(Lp), where Lp = {p} ×M L, and end in q.

Proof. We will work with a model for morphism spaces that makes the
proof particularly simple: by [52, 01L5], the morphism space in EX is equi-
valent to the right-pinched morphism space HomR

EX (p, q) := {p} ×EX (EX /q).
We will observe directly that {p} ×EX (EX /q) is in fact isomorphic to PLp,q =
Lp ×N (N /q). Indeed, at vertex level, the bijection

({p} ×EX (EX /q))0 ∼= (Lp ×N (N /q))0
is clear: recalling that non-invertible 1-paths in EX are elements of P∆

0 ⊂
N1 (as the exit index is necessarily 1 in this degree), let (γ, 1) ∈ P∆

0 . For
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p = dEX1 (γ, 1)
def
= π(dN1 (γ)) to hold, we must have dN1 (γ) ∈ ι(Lp). Similarly,

dEX0 (γ, 1)
def
= ι(dN0 (γ)), which yields the bijection.

Let now k > 0 and consider an exit (k + 1)-path (γ : ∆[k] ?∆[0] → N , j)
in (EX /q)k ⊂ EX k+1. Asking that (γ, j) be in {p} ×EX (EX /q) is equivalent
to asking that

(1) its N -face
∆[k] ↪→ ∆[k] ?∆[0]

γ−→ N ,
which is dNk+1(γ) under the standard identification ∆[k]?∆[0] ' ∆[k+
1], is bottom, as by construction only then can the corresponding EX -
face be in Mk ⊂ EX k;

(2) and that it lies in particular in ι(Lp).
Condition (1) implies moreover that dN` (γ) ∈ Nk is vertical for all ` < k + 1,
since all other faces include the tip ∆[0] ↪→ ∆[k]?∆[0] given by q, whence they
are necessarily not bottom; and if some d`(γ) was top, that would contradict
the bottomness of its (unique) common (k − 1)-face with dNk+1(γ). In fact,
(γ, j) has no n-face that is top once n > 0: given ∆[n] ↪→ ∆[k + 1], there is
necessarily a vertex in dNd+1(γ) that is hit by it.

But then the exit index j must be maximal: j = k+1. For if not, then there
would exist at least one top n-face for n > 0, the largest such, with n = k+1−j,
for instance, being specified by [n] ↪→ [k + 1], α 7→ ` + α. We thus obtain a
bijection ({p} ×EX (EX /q))k ∼= (Lp ×N (N /q))k in a fashion similar to the
bijection of vertices: we have reduced exit paths (γ, j) in question on the LHS
to those of index k+1, and so to only a subset of Nk+1, and specifically those
such that dNk+1(γ) ∈ Lp. These are exactly the elements of the RHS. Finally,
it is a direct check that ({p} ×EX (EX /q))∗ −→ (Lp ×N (N /q))∗ is functorial;
for instance, any vertical face of such a (γ, k + 1) is again of maximal index:
using the formulas in the proof of Lemma 3.2.3, we have [k+1

k+1,i = k and, and
as for degeneracies, ]k+1

k+1,i = k + 2, for all i < k + 1. □

Corollary 3.3.2. Let S =
(
M π←− L ι−→ N

)
be a linked space with M and N

connected, and p ∈M, q ∈ N . Then, π is an equivalence if and only if
HomEX (S)(p, q) ' ΩN .

Here, ΩN denotes the based loop space of N .

Proof. The fibre at any point of the source evaluation PLp,q → Lp is equi-
valent to ΩN . Thus, the homotopy long exact sequence of this fibration implies
that the fibre inclusion induces isomorphisms π∗(ΩN ) ∼= π∗(HomEX (S)(p, q))
iff π∗(Lp) ∼= ∗. Thus, HomEX (S)(p, q) ' ΩN iff π is a trivial Kan fibration.
But, by [52, 00X2], π is a trivial Kan fibration iff it is an equivalence. □

We interpret this as saying that the spaces of non-invertible paths in a
linked space is are at their largest when π is an equivalence: there are just as
many as there are paths in the higher stratum. This is the case, for instance,
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when S is induced by a manifold with boundary, as in Example 3.2.15. We
have a maximal simplification in the other extreme, namely when π is trivial.
Corollary 3.3.3. For a linked space of type

∗ ← N id→ N
we have

HomEX (∗, q) ' ∗.
Consequently, when N = Sing•(N) for N a smooth manifold, we have

Exit(C(N)) ' EX ,
where the left-hand side is the exit path ∞-category of the conically-smooth
open cone

C(N) = ∗ q{0}×N ([0, 1)×N)

on N with its canonical stratification over {0 < 1}.

Proof. We have L∗ = N∗ = N and so PL∗,q ' N /q ' ∗ since N is an
∞-groupoid ([52, 018Y]). This implies EX ' Sing•(N)/. The latter agrees
with the LHS by [6, Proposition 3.3.8].12 □

Since the link of the cone locus ∗ and the interior of C(N) is N itself, one
could consider ∗ ← N ↪→ N × R to be the natural linked space model for
the open cone. Mutatis mutandis, the proof of Corollary 3.3.3 implies that
this modification changes the exit path ∞-category only up to equivalence.
It remains desirable, then, to reach a more systematic understanding of the
linked incarnation of R1-invariance in the conically-smooth theory.

3.4. The space of paths between strata

In this section, let S =
(
M

π←− L
ι−→ N

)
be a linked space. We will gener-

alise Theorem 3.3.1 in this setting and identify L, up to equivalence, with the
space of paths in EX that start in M and end in N .

Let p ∈ M and q ∈ N . We have (Lp ↓ q)N = PLp,q ' Hom(p, q) = (p ↓
q)EX . Formally, varying p should give an equivalence

(L ↓ q)N = PL,q ' (L ↓ q)EX ' (M ↓ q)EX

and then varying q should give
L ' (L ↓ N)N = PL ' (M ↓ N)EX .

Theorem 3.4.1. L ' (M ↓ N).

Our first lemma shows that Remark 3.1.2 holds with ∞-groupoids just as
it does with topological spaces. We include a proof for completeness.
Lemma 3.4.2. Let Pι be the mapping cocyclinder as in Definition 3.1.1. If L
and N are ∞-groupoids, then Pι ' L.
12More precisely, this is an equivalence of quasi-categories for Lurie’s model from [50], or,
after translating to the complete Segal space model and using [6, Lemma 3.3.9], with that
of Ayala et al.
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Proof. SinceN is an∞-groupoid, we observe that the source mapN∆[1] →
N{0} is a Kan fibration between Kan complexes. Moreover, each fibre N∆[1]

p '
p/N, p ∈ N0, is contractible by virtue of being an under-∞-groupoid ([52,
018Y]). This verifies condition (4) of [52, 00X2], which implies that N∆[1] →
N{0} is an equivalence, or equivalently (by the same cited result), a trivial Kan
fibration. Kan fibrations are stable under pullback [52, 00T5], so the natural
map s : Pι → L is a Kan fibration. Finally, as trivial Kan fibrations pull back
to trivial Kan fibrations, s is one such. As it is in particular a Kan fibration,
[52, 00X2] implies that s is an equivalence. □

As its proof shows, the preceding lemma is a generalisation of the fact that
under-∞-groupoids are contractible, which is the special case when L is a point.
Since under-∞-categories can be far from contractible, there is no reason to
expect that Theorem 3.4.1 holds for linked ∞-categories. Indeed, most linked
∞-categories where for instance N contains a non-invertible morphism from
ι(L) to N provide counterexamples, e.g., ({0} ← {0} ↪→ ∆[2]). However, the
following weaker result holds for any linked ∞-category.

Lemma 3.4.3. (L ↓ N) ' (M ↓ N).

Proof. We will in fact give an isomorphism. Observe (M ↓ N)0 = {α ∈
EX 1 : d1α ∈M, d0α ∈ N} = P∆

0 so that α ∈ (M ↓ N)0 iff α = (Γ, 1) with Γ ∈
(PL)0 = (L ↓ N)0. Thus, we have the map (M ↓ N)0 → (L ↓ N)0, (Γ, 1) 7→ Γ.
This gives a bijection (M ↓ N)0

∼= (L ↓ N)0. A similar construction works in
any dimension.

Indeed, let α : ∆[1]×∆[n]→ EX be an element of (M ↓ N)n, i.e., ev0α ∈
Mn, ev1α ∈ Nn. Then its restriction along any exit shuffle Sj : ∆[n + 1] ↪→
∆[1]×∆[n] where j ∈ {1, . . . , n+1} is vertical, since shuffles hit both ends of
the cylinder. Thus,

α|Sj
= (αj, j) ∈ P∆

n with αj|0,...,j−1 ∈ ι(L)j−1.

We will observe that the collection {αj} ⊂ Nj+1 assembles to give a map
A : ∆[1]×∆[n]→ N

which descends to (L ↓ N)n. Indeed, setting
A|Sj

:= αj

defines A on every non-degenerate (n+ 1)-simplex of ∆[1]×∆[n] consistently
since α itself is well-defined. More precisely, let Θ: ∆[θ] ↪→ ∆[n + 1] be some
common simplicial subset of Sj and Sj′ in ∆[1] × ∆[n]. We must show that
Θ∗A|Sj

= Θ∗A|Sj′
, but α already satisfies this, i.e., Θ∗α|Sj

= Θ∗α|Sj′
, so that

in particular Θ∗αj = Θ∗αj′ in Nn+1−(j′−j). This yields A ∈ N∆[1]
n = (N ↓ N)n.

Since ev0A|Sj
= αj|0,...,j−1 ∈ ι(L)j−1 for any exit index j as remarked above,

we have ev0A ∈ ι(L)n, giving A ∈ (L ↓ N)n. We have thus constructed a map
Φ: (M ↓ N) → (L ↓ N),

α 7→ Φ(α) := A.
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As for the inverse, let β : ∆[1]×∆[n]→ N be an element of (L ↓ N)n, i.e.,
ev0β ∈ ι(L)n, and let j < j ′ be exit indices as above. Set

B|Sj
:= (β|Sj

, j) ∈ P∆
n .

This is well-defined, since
ev0Cjβ|Sj

= β|Sj
|0,...,j−1 = (ev0β)|0,...,j−1 ∈ ι(L)j−1,

so that (β|Sj
, j) is indeed an exit path of index j. We have Θ∗B|Sj

= Θ∗B|Sj′

since Θ∗β|Sj
= Θ∗β|Sj′

. Thus, {B|Sj
} assembles to give a map B : ∆[1] ×

∆[n] → EX . Moreover, B descends to (M ↓ N)n, since the initial vertex of
every (β|Sj

, j) – or of any exit path, for that matter – is low, so that all vertices
of ev0B are low. We have thus constructed a map

Ψ: (L ↓ N) → (M ↓ N),

β 7→ Ψ(β) := B.

We may check directly that Φ and Ψ are mutual inverses. Indeed, in any
dimension, we have ΨΦ(α)|Sj

= (Φ(α)|Sj
, j) = (αj, j) = α|Sj

, so ΨΦ = id.
Conversely, ΦΨ(β)|Sj

= Ψ(β)j = β|Sj
, so ΦΨ = id. □

Proof of Theorem 3.4.1. We have Pι = L×N{0}N∆[1] ∼= (L ↓ N). The
statement follows by composing Lemma 3.4.2 and Lemma 3.4.3. □

3.5. A point and a line in space

In this slightly less formal section we wish to see how well Theorem 3.4.1
fares in the context of an iterated application of EX . It is not needed in the
rest of this work and can thus be skipped.

We will consider the example of R3, stratified, in the ordinary sense, as
{0} ⊂ R ⊂ R3 where the middle term is a line through the origin. The strata
of this space are {0}, R× := R r {0}, and R3 r R. The stratifying map
R3 → P is the obvious one to the poset P = {0 ≺ 1 ≺ 3}.

Taking R∗ to consist of {0} and R×, i.e., R stratified as {0} ⊂ R, we
have that the link between {0} and R× consists of two points. If we were to
disregard the stratification on R, the link between it and R3 would be S1×R.
To verify these links, see Example 3.2.16.

We may now construct EX (R∗). However, the ‘link projection’ S1×R ↠ R
does not descend to an ∞-functor S1 ×R → EX (M ′) since the target is not
an∞-groupoid, but there is an induced stratification13 on S1×R through the
underlying map S1×R→ R given by composing with the latter’s stratification:

S1 ×R→ R→ P|R = {0 ≺ 1}.
Let us denote the resulting linked space (using Example 3.2.16 again) by LR∗ .
Now, S1 ×R ↠ R does descend to an ∞-functor

EX (LR∗) ↠ EX (R∗).

13realising a weakly-constructible bundle
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which is a right fibration by virtue of being a Kan fibration. Moreover, the
embedding S1×R ↪→ R3rR naturally descends to an∞-functor EX (LR∗) ↪→
R3 rR, which is trivially a cofibration, so that we can set up the linked ∞-
category

EX (LR∗)

EX (R∗) R3 rR

and denote it by, say, 3(10)
. This is the result of ‘parenthesising’ the chain

inclusions as
({0} ⊂ R) ⊂ R3

and applying EX accordingly.
Alternatively, we may parenthesise as

{0} ⊂ (R ⊂ R3).

That is, ignore the stratification on R∗ to begin with and construct EX (R3
R)

first, where R3
R is (using Example 3.2.16 again) the linked space

R ↞ S1 ×R ↪→ R3 rR.

Now, the link of {0} ⊂ R3 is S2. We see that this gives rise to the opposite
problem to the one in the paragraph above: the projection S2 → {0} is fine, but
the embedding S2 ↪→ R3 does not descend to an ∞-functor S2 ↪→ EX (R3

R).
Still, the same solution is available: we may compose with the stratifying map
defining R3

R to obtain an induced stratification
S2 ↪→ R3 → P ′ = {1 ≺ 3},

where P ′ stratifies R3 in the obvious way by mapping the chosen line to 1 and
its complement to 3. The preimage of 1 in S2 consists of the two intersection
points, say p and q. Thus, S2 is broken into two strata, {p, q} and S2r {p, q}.
Let us denote the resulting linked space (using Example 3.2.16 yet again) by

S2
p,q =

(
{p, q}↞ S1

p q S1
q ↪→ S2 r {p, q}

)
.

The two circles sit within coordinate neighbourhoods around the two points.
There is a span map

S2
p,q ↪→ R3

R

whose link component can be given by shrinking the circle factor of the target’s
link S1 × R – obtaining s1 × R – such that it intersects S2 in exactly two
circles around p and q, and redefining S1

p and S1
q to be these circles. Then,

S1
p qS1

q ↪→ s1×R can be chosen to be simply the identity inclusion. The map
{p, q} ↪→ R, however, cannot be the identity, since then the side

S1
p q S1

q s1 ×R

{p, q} R
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of the span-map-to-be would not commute. (It commutes only ‘in the limit as
s1 approaches a point.’) However, there is an embedding {p, q} ↪→ R induced
by this diagram after choosing elements in the fibres as depicted. This is easily
seen to be well-defined. Furthermore, the other side

S1
p q S1

q s1 ×R

S2 r {p, q} R3 rR

commutes since every map involved is given by the identity inclusion. We have
thus constructed the desired span map.14

This map is term-wise an embedding, and so induces a cofibration
EX (S2

p,q) ↪→ EX (R3
R)

of ∞-categories. We can thus set up the linked ∞-category

EX (S2
p,q)

{0} EX (R3
R)

and denote it by, say, (31)0 .
The immediate question is whether there is an equivalence

EX
(
(31)0

)
' EX

(
3(10)

)
of ∞-categories.

There is a bijection between their vertices but only in a useless sense: those
of the LHS is given by {0}0 q (R0 q (R3 r R)0), and those of the RHS by
({0}0 q R×

0 ) q (R3 r R)0, so the former counts 0 twice. This is a strong
indication that the RHS is the correct order of iteration. We invite the reader
to check that the RHS has the correct links as well, and in fact there is no such
equivalence as mentioned above. We conjecture that this procedure – starting
with deepest strata and applying EX pairwise while keeping track of induced
stratifications on higher links, and iterating EX – recovers the exit path ∞-
categories of (conical, conically-smooth or homotopical) stratified spaces in
higher depth. But what, regardless, is the meaning of the LHS?

14Alternatively, we could have included p and q into R by the identity but chosen a different
embedding for the sphere, one flattened near the two circles.



CHAPTER 4

Quasi-(de)looping

In this chapter, we will take the first step towards transporting the tan-
gential theory of conically-smooth stratified spaces to the linked setting.

4.1. The additive Grassmannian

Let H be a separable real Hilbert space of countably-infinite dimension, so,
up to isometric isomorphism, the real sequence space `2.

Definition 4.1.1. For k ∈ N, BO(k) := Grk(H) denotes the Grassmannian
of k-dimensional subspaces of H.

BO(k) is an infinite-dimensional (Hilbert) manifold modelled on H, and,
thus topologised, is homotopy-equivalent (e.g. [61, 4 ff.] combined with White-
head’s theorem) to the colimit infinite Grassmannian

Grk(R
∞) = colimGrk(R

n)

along the closed embeddings
Grk(R

n) ↪→ Grk(R
n+1)

given by the first-coordinate inclusions Rn ↪→ Rn−1. For our purposes, R∞,
H, and `2 are interchangeable.

Notation 4.1.2. BOq :=
∐

k≥0BO(k), BO+
q :=

∐
k≥1BO(k).

Remark 4.1.3. The purpose of the notation is to distinguish it from the
(connected component of the zeroeth space of the real K-theory) spectrum
BO, which is given by a non-discrete colimit.

The aim of this section is to define a monoidal structure based on direct-
summing of vector spaces, in the spirit of the direct-summing maps

⊕ : Grk(R
n)×Grl(R

m)→ Grk+l(R
n+m)

Passing to infinite Grassmannians, these give maps
BO(k)× BO(l)→ Grk+l(H ⊕H).

Choosing an isomorphism H ⊕H ∼= H yields a map
BO(k)× BO(l)→ BO(k + l),

which defines a map
⊕ : BOq × BOq → BOq (4.1.4)

connected-componentwise.
49
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The problem with this map is that there is no choice of an isomorphism
H ⊕H ∼= H that would make the map above associative, so it does not pro-
mote BOq to a topological monoid. For our purposes, it will suffice to point
out that an isomorphism H⊕H ∼= H, or equivalently a pairing function (bijec-
tion) N ×N ∼= N cannot be associative, as this would contradict injectivity.
In order to attain hands-on access to the stratified Grassmannian, we have
chosen to strictify (a.k.a. rigidify) (BOq,⊕) in a certain way instead. This in-
volves a trade-off: it does give a topological monoid, but also introduces some
redundancy.

Notation 4.1.5. BON(k) := Grk(H
⊕N).

Notation 4.1.6. BO∞
q := {0} q

∐
N≥1

∐
k≥1BON(k).

Remark 4.1.7. Of course, each BON(k) is equivalent (even homeomorphic)
to BO(k) = BO1(k), but this is non-canonical. Thus, with some choice of a
pairing function and some choice of parenthesisation for large exponents, we
have

BO∞
q ' {0} q Z+ × BO+

q.

We separated the zero vector space singleton {0} = BO(0) = BON(0) from
the disjoint union so as not to count it separately for each N ≥ 1.

Construction 4.1.8. Direct-summing of vector spaces gives maps
BON(k)× BOM(l)→ BON+M(k + l),

which define a map
⊕ : BO∞

q × BO∞
q → BO∞

q
connected-componentwise. The zero vector space acts as the identity. This is
easily seen to be associative.

Remark 4.1.9. The canonical associativity of direct-summing of vector bundles
on (paracompact Hausdorff) spaces translates to a monoidal structure on BOq
(or its stable version BO) only up to coherent homotopy. A systematic treat-
ment in this direction, i.e., the theory of E∞-rings and its application to spec-
tra, is laid out in [50]; see also [68]. The E∞-structure on BOq is parametrised,
at arity n, by the (contractible) space of embeddings Hn ↪→ H.

Construction 4.1.8 is considered from a slightly different point of view in
[68, §2], where (BO∞

q ,⊕) with H relaxed to a vector space variable is called
the additive Grassmannian.

The construction and result of this note apply immediately to the other
varieties of Grassmannians such as the oriented, quaternionic, etc.

We will now deloop the topological monoid (BO∞
q ,⊕). By Nhc we denote

the homotopy-coherent nerve, which is recalled in Section 2.2.1.

Definition 4.1.10. By B⊕O we denote the Kan-enriched category with a
single object ∗, endomorphism space BO∞

q , and composition ⊕.

Definition 4.1.11. B⊕O := Nhc(B⊕O).
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Remark 4.1.12. Note that B⊕O is far from being an ∞-groupoid: only the
zero vector space is invertible.

4.2. B⊕O in low dimensions

Using notation from Section 2.2.1, we will discuss explicitly the 1-, 2- and
3-simplices of B⊕O for future reference, and leave higher simplices to the in-
terested reader. For better readability, we will mostly not use the standard
notation for face maps from Chapter 2, opting instead to indicate which ver-
tices are included.

Warning 4.2.1. A ‘vector space’ is a point of BO∞
q .

1-morphisms. Let
F : Path[1]→ B⊕O

be a map of simplicial categories, i.e., a 1-simplex of B⊕O. Both objects
0, 1 ∈ [1] are sent to ∗. The mapping poset P0,1 has the sole nontrivial element
01 := {0, 1} ∈ N0(P0,1), the image of which determines F . Write

V01 := F (01) ∈ Sing0 = Sing0BO∞
q ,

so V01 is a vector space. In fact, F is determined by V01.
More generally, for any k ≥ 1, a k-path Path[k] → C in an arbitrary

simplicial category C is determined by its values on simplices of dimensions
≤ k − 1 in the morphism spaces of Path[k], since the simplices of higher
dimensions are degenerate.

2-morphisms. Let
F : Path[2]→ B⊕O

be a 2-simplex of B⊕O. Let ι∗abF : Path[1]→ B⊕O be the three faces, ιab : [1] ↪→
[2] given by 0 7→ a, 1 7→ b for a < b in [2], so that they are determined by
vector spaces Vab = F (ab) ∈ Sing0 as above. The mapping poset

P op
0,2 = {012 ≥ 02}

includes two new pieces of information: a vector space V012 = F (012) ∈ Sing0,
and, seeing ≥∈ N1(P0,2), a path γ = F (≥) ∈ Sing1 with source V012 and target
V02.

Notice now that 012 is in the image of
P op
1,2 × P

op
0,1 → P op

0,2,

namely 012 = 12 ∪ 01. As F is functorial, we have V012 = V12 ⊕ V01. Thus,
F is determined by three vector spaces V01, V12 and V02, together with a path
γ : V12 ⊕ V01 → V02 in BO∞

q . Pictorially:
∗

∗ ∗

V01 V12

V12⊕V01

V02

γ

(4.2.2)
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If V12 is the identity, i.e. V12 = 0, then this is just a path from V01 to V02.

3-morphisms. Let
F : Path[3]→ B⊕O

be a 3-simplex of B⊕O. There are six non-degenerate edges giving vector
spaces: Vab = F (ab), 0 ≤ a < b ≤ 3. The four non-degenerate faces

ιabc : Path[2] ↪→ Path[3]→ B⊕O

are of the form of (4.2.2), which specifically is the face d3(F ) corresponding to
(a, b, c) = (0, 1, 2). We have four paths of type Vabc = Vbc ⊕ Vab → Vac:
V12 ⊕ V01 → V02, V13 ⊕ V01 → V03, V23 ⊕ V12 → V13, V23 ⊕ V02 → V03.

(4.2.3)
The mapping poset P op

0,3 is as follows:

0123

013 023

03

The triangles above depict the two non-degenerate elements of N2(P
op
0,3), which

F maps to Sing2(BO∞
q ). That is, F gives homotopies filling these triangles as

in
V0123

V13 ⊕ V01 V23 ⊕ V02

V03

(4.2.4)

The first and third paths of (4.2.3) give further decompositions of the sums
on the left and right. Note the decompositions

V0123 = V123 ⊕ V01 = V23 ⊕ V012 = V23 ⊕ V12 ⊕ V01. (4.2.5)
Functoriality of F implies thereby that the path V0123 → V13⊕V01 in (4.2.4) is
equal to (V123 → V13) ⊕ (V01

id−→ V01) with the left summand given by (4.2.3);
similarly, V0123 → V23⊕V02 is also already determined by (4.2.3), i.e., by d3(F ).
Analogously, we see that all 1-paths in (the image of) F are determined by its
faces except for the path V0123 → V03.
Remark 4.2.6. If all but V01, V02, V03 are non-zero, then the right triangle of
(4.2.4) reduces to

V03

V02

V01

while the left triangle is degenerate.
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4.3. The stratified Grassmannian

Our definition of the stratified Grassmannian is straightforward: it is the
under-∞-category of B⊕O of Definition 4.1.11 under its unique object ∗. (See
Section 2.2.2.) It is that suggested in [7, Remark 2.7] except for the stricti-
fication of BOq into BO∞

q and for being a quasi-category rather than a Segal
space.

Definition 4.3.1. V ↪→ := ∗/B⊕O.

Remark 4.3.2. A theorem of Lurie, [52, 01ZS], states that if x ∈ C is an
object of a Kan-enriched category C and x/C is the simplicial under-category
as defined in [52, 01Z8], then there is an equivalence of ∞-categories

Nhc(x/C) ' x/Nhc(C)
if for every morphism f : x→ y and every object z ∈ C, pre-composition with
f ,

HomC(y, z)→ HomC(x, z),

is a Kan fibration between Kan complexes.
This is not the case in our Kan-enriched category B⊕O, since

−⊕ V : BO∞
q → BO∞

q (4.3.3)
is not a Kan fibration whenever V 6= 0. Moreover, V ↪→ is indeed not equivalent
to Nhc(∗/B⊕O), as can be inferred by comparing their morphism spaces.

Indeed, Let V ∈ BOm(l), W ∈ BOn+m(k + l). The objects of ∗/B⊕O
are the points of BO∞

q , and we have, by definition, that Hom∗/B⊕O(V,W ) is
the ordinary fibre of (4.3.3) at W , so the subspace of BOn(k) consisting of
V ′ such that V ′ ⊕ V = W . This is empty if, for instance, W is spanned by
a (k + l)-frame in the second summand of Hn ⊕ Hm. If non-empty, it is a
singleton. Now, by results of Joyal and Lurie (see Hebestreit–Krause [45] for
a direct proof), morphism spaces in homotopy-coherent nerves coincide, up to
equivalence, with those of the original Kan-enriched category, thus

HomNhc(∗/B⊕O)(V,W ) ' Hom∗/B⊕O(V,W ).

On the other hand, by [51, Lemma 5.5.5.12], HomV↪→(V,W ) is the homotopy
fibre of (4.3.3) at W , and so is equivalent to the space of paths in BOn+m(k+l)
that start at V ′⊕V for some V ′ and end at W . In other words, we would have
V ↪→ ' Nhc(∗/B⊕O) if BO∞

q were equipped with the discrete topology. This
justifies Definition 4.3.1.

We will now explicate the morphisms of V ↪→ up to dimension 2. Via the
identification ∆[0] ?∆[n] ' ∆[n + 1] as in Remark 2.2.10, n-simplices of V ↪→
are (n+ 1)-simplices B⊕O with no qualification, which is to say that we have
bijections

V ↪→n ∼= Fun
(
Path[n+ 1], B⊕O

)
,

since B⊕O has a unique object. In particular, a 0-simplex of V ↪→ is a vector
space V (recall Warning 4.2.1). Generalising Remark 2.2.11, the face and
degeneracy maps of V ↪→ can be written in terms of those of B⊕O as follows.
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Lemma 4.3.4. dV↪→
i = dB

⊕O
i+1 , sV↪→

i = sB
⊕O

i+1 .

Proof. We have (id0 ? ∂i : ∆[0] ?∆[k] ↪→ ∆[0] ?∆[k + 1]) = (∂1+i : ∆[k +
1] ↪→ ∆[k + 2]) upon identifying ∆[0] ?∆[•] ' ∆[• + 1], and similarly for the
degeneracies. □

Remark 4.3.5. A 1-morphism of V ↪→ is as in (4.2.2), with source V01 and
target V02 (see Remark 2.2.11) together with a path, which we can summarise
as V01 ⊆ V12 ⊕ V01

γ→ V02. In this sense, morphisms of V ↪→ can be said to be
‘injections of vector spaces’ if one disregards γ. Taking constant γ, and using
the inner product on H to choose the orthogonal complements canonically,
includes proper vector space injections into the non-invertible morphisms of
V ↪→. In view of Remark 4.3.2, identifying morphisms with injections amounts
to equipping BO∞

q with the discrete topology.

2-morphisms. We resume our exposition in dimension 2 before moving
on to our next result. The purpose is to push the morphisms-as-injections
point of view one dimension higher. It also serves to motivate the ideas in the
proof of Theorem 4.3.11 below but can otherwise be skipped.

A 2-morphism of V ↪→ is a map
γ : ∆[0] ?∆[2]→ B⊕O

whose edges may be described as follows:
2

1 3

0

W23W12

V01 V02 V03

W13
(4.3.6)

We have the following three induced faces of γ:

∆[0] ?∆[1] ∆[0] ?∆[2] B⊕O

∆[2] ∆[3]

'

id×∂i

'

γ

id×∂i

dB
⊕O

i+1 γ

γ

The {0, 1}-edge of ∆[2] is called its source edge, and the {0, 2}-edge of ∆[2]
its target edge. We say, therefore, that the induced face dB⊕O

2 γ is its source
face, and dB

⊕O
1 γ its target face. These two faces share their respective source
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edges:
∆[0] ?∆[0] ∆[0] ?∆[1] ' ∆[2] B⊕O

∆[1]

∼

id×∂1 γ2,γ1

γ01

which is labelled by V01 in (4.3.6). The source face of γ is of type V01 ⊆
W12 ⊕ V01 ' V02, its target face of type V01 ⊆ W13 ⊕ V01 ' V03, and its
intermediate face is of type V02 ⊆ W23 ⊕ V02 ' V03. Putting them together
gives the picture

V01 ⊆ W12 ⊕ V01 V02 ⊆ W23 ⊕ V02 V03

W13 ⊕ V01

V01⊆ (4.3.7)

Consider now the final face of γ:

∆[2] ∆[0] ?∆[2] B⊕O

Γ

ι1

(2.2.6)
γ

It is of type Γ = (W12 ⊆ W23 ⊕W12 → W13). Concatenating the upper paths
in (4.3.7) and inserting Γ gives

V01 W23 ⊕W12 ⊕ V01 V03

W13 ⊕ V01

⊆

⊆

Γ⊕id (4.3.8)

The left triangle clearly commutes. The homotopy in the left triangle of (4.2.4)
(with all paths inverted) commutes the right triangle of (4.3.8) in view of
(4.2.5).

Remark 4.3.9. If all but V01, V02, V03 are non-zero, then (4.3.8) reduces to

V01 V02 V03

together with a filler 2-path in BO∞
q .

The core of V ↪→. We have established above the sense in which the non-
invertible morphisms of V ↪→ are given by proper injections of vector spaces.
It is desirable, however, that V ↪→ contain no more invertible morphisms than
the original infinite Grassmannians, so that no more information is added
unnecessarily. Indeed, Theorem 4.3.11 below states just this.

Notation 4.3.10. For C an ∞-category, let C' denote its maximal sub-∞-
groupoid, or core, i.e. the ∞-groupoid whose n-simplices are exactly those n-
simplices of C whose edges are isomorphisms C. This is indeed an∞-groupoid
by a result of Joyal [47]; see also [52, 019D]. We will write V' := (V ↪→)'.
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We should note again that the second equivalence, from Remark 4.1.7, in
the statement below, is very much non-canonical.

Theorem 4.3.11. V' ' BO∞
q ' ∗ q Z+ × BO+

q.

Proof. First, given a k-simplex γ of BO∞
q , we will construct a functor

Γ: Path[k + 1]→ B⊕O

of simplicial categories. It is necessarily trivial on objects. Let now i ≤ j ∈
[k + 1] and let

α = (α0 ≥ · · · ≥ αn) ∈ Nn

(
P op
i,j

)
with subposets αx = αx1 , . . . , α

x
nx

, αxy ∈ [k+1], αxy < αxy′ strictly for y < y′, and
αx1 = i, αxnx

= j.
If j = i, then all such sequences trivial and each αx consists of i alone, and

therefore, by functoriality, Γ(α) = sn0 (0) ∈ (BO∞
q )n, the n-fold degenerate zero

vector space. Let us therefore assume i < j.
If i > 0, we also set Γ(α) := sn0 (0).

If i = 0 and so j > 0 by assumption, every subposet αx consists of at least
two elements. Consider then the associated map

A : [n]→ [k]

x 7→ αx2 − 1.

It is functorial since the partial order ≤ is defined to mean that α is given by
subsets of [k + 1] satisfying α0 ⊇ · · · ⊇ αn, so αx′2 ∈ αx and therefore αx2 ≤ αx

′
2

whenever x ≤ x′. It is moreover well-defined since αx2 − 1 ≤ j − 1 ≤ k, and
αx2 − 1 > αx1 − 1 ≥ 0. Now, the rule

Φ: Nn

(
P op
i,j

)
→ ∆[k]n = Hom∆([n], [k])

α 7→ Φ(α) := A

is simplicial: let δ : [n′]→ [n] be a poset map, so (δ∗(α))x = αδ(x) for x ∈ [n′],
and observe that Φ(δ∗α)(x) = α

δ(x)
2 − 1 = δ∗(Φ(α))(x).

We thus obtain the maps
Γ: Nn

(
P op
i,j

)
→ (BO∞

q )n

α 7→ Φ(α)∗γ

for n ≥ 0 which assemble into maps
Γ: HomPath[k+1](i, j)→ BO∞

q

for all pairs i ≤ j in [k + 1]. The simpliciality of Φ implies Γ(δ∗α) = δ∗Γ(α),
i.e., the simpliciality of Γ on morphism spaces.

We will now show that Γ is functorial. Let α ∈ Nn

(
P op
i,j

)
, β ∈ Nn

(
P op
j,l

)
be

sequences as above, with i ≤ j ≤ l in [k + 1], so
β ∪ α =

(
β0 ∪ α0 ≥ · · · ≥ βn ∪ αn

)
∈ Nn

(
P op
i,l

)
.

If i = j = l, then Γ(β ∪ α) = sn0 (0) ⊕ sn0 (0) = sn0 (0); if i = j < l, then
Φ(β ∪ α)(x) = (βx ∪ αx)2 − 1 = βx2 − 1 since αx = (αx1) is degenerate and so
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(βx ∪ αx)1 = αx1 = βx1 , hence Γ(β ∪ α) = Γ(β) = Γ(β)⊕ sn00 = Γ(β)⊕ Γ(α); if
i < j ≤ l, then analogously Φ(β ∪ α)(x) = αx2 − 1, and so Γ(β ∪ α) = Γ(α) =
Γ(β) ∪ Γ(α) because j > 0 gives Γ(β) = sn0 (0) by construction.

Let us observe that the maps
Ψ: (BO∞

q )k → V ↪→k
γ 7→ Ψ(γ) := Γ

assemble into an ∞-functor Ψ: BO∞
q → V ↪→. By Lemma 4.3.4, we must show

that
Ψ(diγ) = dB

⊕O
i+1 (Ψ(γ)) and Ψ(siγ) = sB

⊕O
i+1 (Ψ(γ))

for all i ∈ [k]. For the first, we may assume k ≥ 1, and take j = 0, l > 0,
and α ∈ Nn

(
P op
0,l

)
= HomPath[k](0, l). The face map ∂i : [k− 1] ↪→ [k] composes

with Φ(α) : [n]→ [k − 1] to give
[n]→ [k]

x 7→

{
αx2 − 1, αx2 − 1 ≤ i− 1,

αx2 , αx2 − 1 ≥ i.

=

{
αx2 − 1, αx2 ≤ i,

αx2 , αx2 ≥ i+ 1

so that Ψ(diγ)(α) is the pullback of γ along this map.
On the other hand, dB⊕O

i+1 is given by pre-composing with
∂i+1 : Path[k] ↪→ Path[k + 1], (4.3.12)

which on α reads ∂i+1(α) = (∂i+1α
0 ≥ · · · ≥ ∂i+1α

n) ∈ HomPath[k+1](0, ∂i+1l)
with ∂i+1α

x = ∂i+1(α
x
1), . . . , ∂i+1(α

x
nx
) = 0, ∂i+1(α

x
2), . . . , ∂i+1l and so

∂i+1(α)
x
2 − 1 = ∂i+1(α

x
2)− 1 =

{
αx2 − 1, αx2 ≤ i,

αx2 , αx2 ≥ i+ 1
.

By the above, we obtain ∂iΦ(α) = Φ(∂i+1α) and thus
Ψ(diγ)(α) = Φ(α)∗(diγ) = (∂iΦ(α))

∗γ = (Φ(∂i+1α))
∗γ

= ∂∗i+1Φ(α)
∗γ

= dB
⊕O

i+1 (Ψ(γ))(α).

Compatibility with degeneracies can be verified similarly.
We have thus defined an ∞-functor

Ψ: BO∞
q → V' ↪→ V ↪→,

which necessarily factors as depicted.
Let now

σ : Path[k + 1]→ B⊕O

be a k-simplex of V', which is to say that the restrictions
σ|ijl : Path{i ≤ j ≤ l} ↪→ Path[k + 1]

σ−→ B⊕O,
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as 1-morphisms of V ↪→, are isomorphisms. By Lemma 4.3.4, the relevant triples
satisfy i = 0, j ≥ 1. As discussed at around (4.2.2), σ|0jl is fully determined
by a path in BO∞

q of type
σ(jl)⊕ σ(0j)→ σ(0l)

where σ(0j) is the source of σ|0jl and σ(0l) its target. However, since V ↪→
contains no morphism of type W → V if rk(W ) > rk(V ), we conclude σ(jl) =
0 since σ|0jl is an isomorphism. Since the pair 1 ≤ j ≤ l was arbitrary,
this implies that for any α = α1, . . . , αn ∈ N0

(
P op
j,l

)
we have σ(α) = 0 by

decomposing α = αn−1αn ∪ · · · ∪ α1α0. Thus we obtain
σ(0, α) = σ(0, α1) (4.3.13)

by decomposing 0, α = α ∪ 0, α1.
Now, as was noted in Remark 4.3.2, we have HomV↪→(V,W ) is equivalent

to the space of paths in BO∞
q that start V ′⊕V for some V ′ and end at W , and

we have shown that within V' this reduces to V ′ = 0, implying, for V and W
in the same connected component of BO∞

q , that HomV≃(V,W ) is equivalent to
the space of paths V → W , which is exactly the morphism space of BO∞

q from
V to W . Moreover, along the former equivalence, Ψ maps as the identity on
morphism spaces. Since it is moreover a bijection on objects, we conclude (by
[52, 01JX]) that it is an equivalence onto V' by virtue of being fully faithful
and essentially surjective. □

Remark 4.3.14. Equation (4.3.13) may seem to lead to the following ‘point-
set’ Ansatz to constructing an inverse to Ψ, with the goal of promoting V' '
BO∞

q to an isomorphism. Namely, consider the sequence
Λk =

(
0, 1, 2, . . . , k + 1 ≥ 0, 2, 3, . . . , k + 1 ≥ · · · ≥ 0, k + 1

)
∈ Nk

(
P op
0,k+1

)
.

Its image σ(Λk) ∈ (BO∞
q )k is of type

σ(0, 1)→ σ(0, 2)→ · · · → σ(0, k + 1).

The map Ψ−1 : V' → BO∞
q , σ 7→ σ(Λ), however, is not necessarily simpli-

cial. To compare faces, let i ∈ [k] so that we have σ(diΛ
k) = di(σ(Λ

k)),
while (dB

⊕O
i+1 σ)(Λ

k−1) = σ(∂i+1Λ
k−1) by definition, so one might expect that

σ(diΛ
k) = σ(∂i+1Λ

k−1), giving compatibility with face maps.1 This need not
hold: for instance, taking k = 3 and i = 1, this equation reads

σ(01234 ≥ 034 ≥ 04) = σ(0134 ≥ 034 ≥ 04).

While their vertices agree, the functoriality of σ does not necessitate that these
two simplices agree.

Still, it is possible to give a map V' → BO∞
q using an idea to be developed

later. Namely, to σ we can associate its value on a certain topological k-simplex
5 ⊆

∣∣N•
(
P op
0,k+1

)∣∣ which, after passing through the adjunction of geometric
realisation with the singular chains functor, yields a k-simplex of BO∞

q . We
get back to this in Remark 5.2.53, using the construction of 5 in Section 5.2.4.

1Here, ∂i+1 applies to Λk−1 as in (4.3.12).
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The following suggests ∗/Nhc(−) as a means to adjoin non-invertible paths
to a smooth collection of objects with a monoidal structure.

Corollary 4.3.15. Let M be a topological monoid whose only invertible ele-
ment is its unit. Then

(∗/Nhc(BM))' ∼= M

Moreover, (∗/Nhc(BM)) ' Nhc(∗/BM) if and only if M is discrete.

Proof. The proof of Theorem 4.3.11 applies mutatis mutandis. For the
second statement, see Remarks 4.3.2 and 4.3.5, which also apply for the same
reasons. □
Remark 4.3.16. This is not to say that ∗/− and Nhc commute if and only if
the argument simplicial category is discrete, but only that this happens to be
the case in the situation of Corollary 4.3.15.





CHAPTER 5

The unpacking map

Our next goal is to construct a map
U : EX (BO(n,m))→ V ↪→

from the exit path ∞-category of the (n,m)-Grassmannian of Example 3.2.17
to the stratified Grassmannian. The theory of tangential structures on linked
spaces will then be able to interface with the conically-smooth variant.

5.1. The unpacking map in low dimensions

The map restricted toBO(n)• andBO(n+m)• inside EX := EX (BO(n,m))
is defined to be inclusion into the maximal sub-∞-groupoid of V ↪→. It remains
to define the restriction

EX k+1 ⊃ P∆
k → V ↪→k+1

∼= Fun
(
Path[k + 2], B⊕O

)
,

for k ≥ 0. We will explain dimensions 1 and 2 verbosely before giving the full
construction without further motivation.

An element (γ, 1) of P∆
0 – the exit index in this dimension is necessarily 1

– corresponds to a path γ in BO(n + m) whose initial point is a direct sum
V12 ⊕ V01 with V01 ∈ BO(n), V12 ∈ BO(m). Denoting the endpoint by V02, γ
determines a 2-path by arranging the data exactly as in (4.2.2). We have thus
defined

U|≤1 : EX≤1 → V ↪→. (5.1.1)
Lemma 5.1.2. The assignment U|≤1 is functorial, i.e., compatible with all
relevant face and degeneracy maps.

Proof. The source of the image of γ is V01, and the target is V02, which are,
by construction, the images of the source and target of γ in EX , respectively:

dV
↪→

1 (U(γ, 1)) = V01 = U
(
pr
(
d
BO(n+m)
1 γ

))
= U

(
dEX1 (γ, 1)

)
,

and
dV

↪→

0 (Uγ) = V02 = U
(
d
BO(n+m)
0 γ

)
= U

(
dEX0 (γ, 1)

)
.

Compatibility with degeneracies is immediate since in these dimensions there
are no degenerate non-invertible paths. □
Theorem 5.1.3. The assignment U|≤1 of (5.1.1) extends to an ∞-functor

U : EX (BO(n,m))→ V ↪→.

We call U the unpacking map. Such an extension involves, as we will see,
some contractible choices. Somewhat mysteriously, we will see that none of

61



62 5. THE UNPACKING MAP

these choices breaks functoriality. Our construction will be formulated as an
inductive proof of existence. First, we will discuss what U has to do with
2-morphisms at a phenomenological level so as to elucidate the essential issues
to be overcome.

Construction 5.1.4. Assignment (5.1.1), U|≤1 : EX≤1 → V ↪→, extends by
functoriality to a subset of simplicies of EX in every dimension. That is, for
any finite-order simplicial operator O =

∏
αi, αi = sji or dj′i for any collection

of indices j, j′ such that the application makes sense, we set U(O(γ, 1)) :=
OU(γ, 1) for any (γ, 1) ∈ P∆

0 . Lemma 5.1.2 states exactly that this is well-
defined. In effect, this gives a new definition only on degenerate simplices of
dimension higher than 1 stemming from exit 1-paths, so we could have con-
sidered α = sji only. This defines U on the simplicial subset of EX generated
by BO(n), BO(n + m), and P∆

0 ⊂ EX 1. We write EX≤1 for this simplicial
subset, and again

U≤1 : EX≤1 → V ↪→

for the resulting ∞-functor.

We will observe a filtration
⋃
EX≤k = EX , whereupon it will suffice to

extend U along it. This will be our strategy to prove Theorem 5.1.3.

5.1.1. 2-morphisms. Exit paths in P∆
k come in k + 1 classes according

to their exit indices, which need to be mapped to V ↪→ in different ways.
First, in order to uniquely determine a 3-path in B⊕O, it is enough to map

out of the sets N≤2(P
op
i,j ) into BO≤2 := (BO∞

q )≤2, since higher dimensions are
degenerate. Indeed, in general, a κ-path in B⊕O is determined in dimensions
≤ κ− 1.

Notation 5.1.5. In the rest of this work, we write BO = BO∞
q at the risk of

confusion with common K-theoretical notation.

Definition 5.1.6. We call those 1-morphisms in Path[l] that are of type
N0(P

op
αβ) 3 αβ := {α < β} ⊂ [l]

simple, as they are simple with respect to ∪. The remaining morphisms we
call composite. Similarly for higher morphisms.

Example 5.1.7. For instance, in N1(P
op
1,4), (1234 > 124) = (234 ∪ 12 >

24∪ 12) = (234 > 24)∪ (12 > 12) is composite, but 1234 > 14 is simple. More
generally, any arrow with target a pair is simple, and the others are composite.

The simple 1-morphisms in Path[3] are of type αβ ⊂ [3], which by a 3-path
are mapped to Vαβ ∈ BO0. When β = α+2 (of which type there are two pairs),
there are arrows α, α + 1, β = α + 1, β ∪ α, α + 1 > αβ in N1(P

op
αβ), which

determine paths Vα+1,β⊕Vα,α+1 → Vαβ, i.e., V12⊕V01 → V02 and V23⊕V12 → V13
in BO1, namely two of the face 2-paths. The remaining two faces are supplied
analogously by considering (α, β) = (0, 3) and the compositions 013 = 13∪ 01
and 023 = 23∪02. Finally, again for (α, β) = (0, 3), consider 0123 = 23∪12∪01,
which is to be mapped to V0123 = V23 ⊕ V12 ⊕ V01. Out of N1(P

op
0,3) we receive
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paths V0123 → V03, V0123 → V013, V0123 → V023. The two non-degenerate
elements (0123 > 023 > 03) and (0123 > 013 > 03) in N2(P

op
0,3) are to map in

BO2 to
V023

V0123 V03

=

V23 ⊕ V02

V23 ⊕ V12 ⊕ V01 V03

(5.1.8)

and
V013

V0123 V03

=

V13 ⊕ V01

V23 ⊕ V12 ⊕ V01 V03

(5.1.9)

We have thus summed up the data needed to provide a functor Path[3] →
B⊕O.

Now, let us start with paths of exit index 2 ∈ {1, 2}. Such an exit path
(γ, 2) (in P∆

1 ⊂ EX 2) consists of a 2-simplex γ ∈ BO(n+m)2 of type

K

W ⊕ V W ′ ⊕ V ′
γW⊕γV

γ⊕
γ⊕′ (5.1.10)

where the bottom edge comes from BO(n) × BO(m) (whence it is ⊕ of two
paths). If (γ, 2) is in EX≤1, then U(γ, 2) is already defined by Construc-
tion 5.1.4. Let us assume, therefore, that (γ, 2) is not degenerate. The natural
choice for the image, visualised as a 3-simplex of B⊕O, is

U(γ, 2) =

2

1 3

0

W ′0

V V ′
K

W .

Indeed, the edges in (5.1.10) supply the face triangles. The fact that the
bottom edge is of type γW ⊕γV is crucial, since the summand paths supply the
triangles adjacent to the edge decorated by the zero vector space. The only
wrinkle is that the upper face requires a path W ′ → W , which can be taken to
be the (standard) inverse of γW , which we will denote by γ−1

W .1 As for (5.1.8),

W ′ ⊕ V ′

W ′ ⊕ V K

γ⊕′(i)

(ii)

, (5.1.11)

1The meaning of inversion, in any dimension, is recalled in Notation 5.2.4.
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note that we must yet choose the paths W ′⊕ V → W ′⊕ V ′ and W ′⊕ V → K
(corresponding to the arrows 0123 > 023 and 0123 > 03). To this end, consider
the diagram

W ′ ⊕ V ′ K

W ′ ⊕ V W ⊕ V

γ⊕′

idW ′⊕γV

γ−1
W ⊕idV

γW⊕γV γ⊕

and choose the obvious fillers. By idA we mean the constant (degenerate) loop
s0A at A. This suggests using (i) = idW ′⊕γV , (ii) = (γ−1

W ⊕ idV )∗γ⊕ (we write
concatenation from left to right) whereupon the obvious filler can be chosen.
Similarly, for (5.1.9), i.e.,

W ⊕ V

W ′ ⊕ V K

γ⊕(i)′

(ii)′

, (5.1.12)

consider
W ⊕ V K

W ′ ⊕ V W ′ ⊕ V ′

γ⊕

γ−1
W ⊕idV

idW⊕γV

γ−1
W ⊕γ−1

V
γ⊕′

and proceed similarly. This completes the construction of N≤2(P
op
0,3)→ BO≤2

and so of the 3-path Path[3]→ B⊕O associated to the exit path (γ, 2).
The image of an index-1 exit path

K K ′

W ⊕ V

γK

γ⊕
γ⊕′

(5.1.13)

is constructed analogously, with its picture as a 3-simplex of B⊕O given by
2

1 3

0

0W

V K K′

W .

We have thus defined EX≤2 → V ↪→≤2. (A systematic account will follow in Sec-
tion 5.2). Writing

EX≤2 := (EX 2 r EX≤1) ∪ EX≤1

for the simplicial subset of EX generated by EX≤1 together with the elements
of P∆

1 that were not in EX≤1, we claim that Construction 5.1.4 applies mutatis
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mutandis to yield an ∞-functor
U≤2 : EX≤2 → V ↪→,

so we must provide an analogoue of Lemma 5.1.2. In particular, this will show
that the contractible choices we have made along the way have had no bearing
on functoriality.

Lemma 5.1.14. The map U≤2 is a well-defined extension of U≤1.

Proof. Consider again an index-2 exit path (γ, 2) as in (5.1.10). Its source
edge is the path dEX2 (γ, 2) = (γV : V → V ′) ∈ BO1 ⊂ EX 1. Since its two
remaining edges are vertical, they are the elements of P∆

0 induced by γ⊕′ and
γ⊕. Now, recall Lemma 4.3.4 that U(γ, 2) is identified with an element of
B⊕O3

∼= V ↪→2 via ∆[0] ? ∆[2] ' ∆[3]. Accordingly, face maps apply on the
factor ∆[2], i.e., ∂ acts as id∆[0] ? ∂. In the picture in B⊕O3, this means that
when pulling back along a face map ∂ : ∆[1] ↪→ ∆[2], we restrict to the triangle
whose top edge is specified by ∂; e.g., ∂2 : ∆[1] ↪→ ∆[2], which skips 2, applies
to give

dV
↪→

2 U(γ, 2) =
1

0 2

0V

V ′

,

which is precisely U(γV ). As for the compatibility with degeneracies, there
is, by construction, nothing to show. We have siU≤2(γ, 2) = U≤2(si(γ, 2))
since U≤2(si(γ, 2)) = siU≤2(γ, 2) by construction, and this is well-defined if
si(γ, 2) /∈ EX≤1, so that U≤2 does not clash with U≤1. But si(γ, 2) = O(γ′, 1)
would imply

(γ, 2) = disi(γ, 2) = diO(γ′, 1) = O′(γ′, 1) ∈ EX≤1, (5.1.15)
which is precluded. This shows that U≤2 is a well-defined extension of U≤1.
We leave the analogous treatment of the remaining two faces and of the index-1
case to the reader. □

Remark 5.1.16. So as to avoid confusion, note in particular that the top face
2

1 3

W ′0

W

,

given by γ−1
W is not a face in V ↪→, nor is γW ∈ BO(m)1 ⊂ EX 1 a face of (γ, 2)

in EX .

Remark 5.1.17. We had to assume that (γ, 2) is non-degenerate in order to
apply the construction above, or else we would have broken functoriality. For
instance, suppose the exit 2-path in question is degenerate: (γ, 2) = s0(γ

′, 1) =
(s0γ

′, 2). It can be easily verified that the construction above applied to this
would yield (i) = id and (ii) = id ∗ γ′ in (5.1.8), whereas the counterparts of
these edges in s0(U(γ′, 1)) are id and id, respectively. These, as well as the
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filler 2-simplices, are not necessarily the same. There does not seem to be a
natural closed-form formula for U, hence our inductive-recursive construction.

Remark 5.1.18. That, e.g., a 2-path x ∈ EX 2 is not in (EX≤1)2 ⊆ EX 2 is
equivalent to it not being degenerate in the usual sense. Indeed, say x = Oy
for some simplicial operator O and y ∈ EX 0/1. Then O must contain at least
one degeneracy, since otherwise y would be in EX≥3 or y = x already. So let s
be the last (left-most) degeneracy in O and move it through the face maps in
O to the left of s using simplicial identities, so that O = s′O′ for a resulting
degeneracy s′. Then x = s′O′y is degenerate.

We will note the proof for completeness. Manifestly, it applies in any
dimension.

Proof of Remark 5.1.18. One can use dαsβ = sβ−1dα for α < β,
dαsβ = id for α ∈ {β, β + 1} or dαsβ = sβdα−1 for α > β + 1. After us-
ing the latter, move on to the next degeneracy in O, and iterate. If there is
none, then we are again in the situation where O only contains face maps so
that y ∈ EX≥3, which is absurd. □

Still, we will keep using these simplicial closures for convenience, as they
simplify some arguments – notably the latter part of the proof of Lemma 5.1.14,
which concerns degeneracies. It is valid in any dimension.

5.2. The proof of Theorem 5.1.3

Now we proceed to give the general construction. We will first give a
systematic account of

P∆
1 →

[
Path[3], B⊕O

]
in such a way that the ideas generalise to all dimensions. It will be conventient
to slightly rearrange the visual representation of exit paths.

Notation 5.2.1. For (γ, 1) ∈ P∆
0 , the diagram W ⊕V → K depicts γ ∈ BO1.

Instead, V K
(W,γ) or V KW for short, depicts (γ, 1) more informatively.

Similarly, we sometimes depict (γ, 2) ∈ P∆
1 by

K

V V ′

W
W ′ , etc.

Notation. [A,B] := Fun(A,B).

Notation 5.2.2. We write N : BO(n) × BO(m) → BO(m) to denote the
second coordinate projection. When we apply N to a low face of an exit
path (γ, j), we mean that, first, the corresponding face of γ is to be taken,
which is then (unambiguously) to be identified with a simplex of the link
BO(n)× BO(m), and then N is to be applied. Namely, we have, by abuse of
notation, a map

N : P∆
∗ → BO(m)∗
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for each ∗ ≥ 0, given by the composition

P∆
∗ P∗ L∗ BO(m)∗

N

(γ,j) 7→Γj=γ◦Cj s N

where we have not omitted ∗ since P∆ is not a simplicial set. Note that the
result is degenerate unless the exit index is maximal.

Definition 5.2.3. The maximal low sub-simplex of (γ, j) ∈ P∆
k is (the image

under π of) γ|0,...,j−1. In EX (BO(n,m)), this means γ|0,...,j−1 ∈ (BO(n) ×
BO(m))j−1,2 and so we write

N(γ, j) := pr2(γ|0,...,j−1) ∈ BO(m)j−1

and call it the normal component of (γ, j).

Notation 5.2.4. For X a space, we denote by Op the canonical isomorphism
X ' Xop of Kan complexes, by which we mean Sing•(X) ' Sing•(X)op. It is
given by inverting simplices by pulling back along the maps

Op: ∆n → ∆n, (a0, . . . , an) 7→ (an, . . . , a0)

of the standard topological n-simplex, n ≥ 0. See e.g. [52, 003R]. For example,
when we wrote γ−1 above and called it the ‘canonical inverse’, this meant
γ−1 = Op(γ) =

(
∆1 Op−→ ∆1 γ−→ X

)
, so that d0γ−1 = d1γ, d1γ−1 = d0γ. More

generally, for any simplicial set S, we have Sop
∗ = S∗, and, in dimension n,

dS
op

i = dSn−i, sS
op

i = sSn−i.

Notation 5.2.5. Let α0, . . . , α` ∈ [k]. By Path[α0, . . . , α`] ∼= Path[`] we
denote the full simplicial subcategory of Path[k] generated by the objects
α0, . . . , α`.

5.2.1. P∆
0 → [Path[2], B⊕O]. We define U hereon by

(γ, 1) =

K

W ⊕ V

γ 7→


N0(P

op
0,a)→ BO0, 0, a 7→ {a− 1}∗(γ, 1) =

{
V, a = 1

K, a = 2

N0(P
op
1,2)→ BO0, 12 7→ OpN(γ, j) = N(γ, j) = W

N1(P0,2)→ BO1, (012 > 02) 7→ γ.

This induces U≤1 : EX≤1 → V ↪→ as in Construction 5.1.4.

5.2.2. P∆
1 → [Path[3], B⊕O]. While skipping to the induction step below

is now possible, we will treat this dimension explicitly in order to illustrate the
ideas. Let (γ, j) ∈ P∆

1 and assume (γ, j) /∈ EX≤1.
Induced faces. We first define the faces of U(γ, j). The faces dV↪→

0,1,2U(γ, 2)
are defined by U≤1 via functoriality, i.e., by

dV
↪→

i (U≤2(γ, j)) := U≤1(d
EX
i (γ, j)). (5.2.6)

2We do not distinguish BO(n)×BO(m) and its image in BO(n+m) in notation.
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This fixes U≤2(γ, j) by Lemma 4.3.4 on the subcategories Path[0, k, l] ∼= Path[2]
of Path[3], for 1 ≤ k < l ≤ 3 (Notation 5.2.5). This is consistent due to the
well-definedness of U≤1 as shown in Lemma 5.1.2.
The top face. The remaining B⊕O-face dB⊕O

0 (U(γ, j)) is the restriction to
the full simplicial subcategory Path[1, 2, 3]. Any pair 1 ≤ α < β ≤ 3 specifies
a restriction along Path[α, β] ↪→ Path[1, 2, 3], and writing δ for the remaining
element of {1, 2, 3}, these restrictions must by functoriality coincide with

dB
⊕O

δ−1 d
B⊕O
0 (U(γ, j)) = dB

⊕O
0 dB

⊕O
δ (U(γ, j))

= dB
⊕O

0 dV
↪→

δ−1(U(γ, j))

(5.2.6)
= dB

⊕O
0 U≤1(d

EX
δ−1(γ, j))

where we used the simplicial identity didj = dj−1di for i < j for the first
equation and Lemma 4.3.4 for the second. In other words, the edges of the
dB

⊕O
0 -face are determined already by U≤1. Therefore, only the restriction to

the (2− 1 = 1)-dimensional simplices of N•(P
op
1,3), that is,

N1(P
op
1,3)→ BO1

(123 = 23 ∪ 12 > 13) 7→
(
U(γ,j)(23)⊕U(γ,j)(12)→ U(γ,j)(13)

)
= (U(d0d0(γ, j))⊕U(d0d2(γ, j))→ U(d0d1(γ, j)))

remains to be specified. This is determined by N by setting
U(γ,j)|N1(P

op
1,3) := OpN(γ, j). (5.2.7)

This is well-defined since N sends exit k-paths to (k − 1)-paths in BO.

Remark 5.2.8 (interrupting the proof). We should note that it is immaterial
that (5.2.7) is ‘not functorial’ (although U will be). As noted in Lemma 5.2.15,
the direct sums appearing in the dB⊕O

0 -face are trivial in that all summands
but one are zero, the non-zero one being determined by the exit index j. We
use OpN to supply only the path in BO(m). We have U(γ,j)(23) = 0 if j = 1,
and U(γ,j)(12) = 0 if j = 2. If j = 1, the edges of dB⊕O

0 are specified by
simpliciality as in

2

1 3

0W

W

,

and OpN(γ, 1) is Op(idW ) = idW : W = 0 ⊕W → W . Here, (5.2.7) happens
to be functorial as dB⊕O

0 happens to lie in V'. However, if j = 2, the filler of

2

1 3

W ′0

W

is supplied by OpN(γ, 2) = Op(γW ) = γ−1
W : W ′ = 0 ⊕W ′ → W . This breaks

functoriality in the sense that dB⊕O
0 is not invertible as a morphism in V ↪→ from

0 to W . In any case, the path is as desired.
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1-paths induced by functoriality. Some 1-paths in the image of U(γ, j)
are determined by the data provided thus far and by imposing functoriality
(cf. Example 5.1.7). Namely, we have the following decompositions:

(i) = (0123 > 023) = (23 ∪ 012 > 23 ∪ 02)

= id23 ∪ [012 > 02]

∈ Im
(
∪ : N1(P

op
2,3)× N1(P

op
0,2)→ N1(P

op
0,3)
)
,

(i)′ = (0123 > 013) = (123 ∪ 01 > 13 ∪ 01)

= [123 > 13] ∪ id01

∈ Im
(
∪ : N1(P

op
1,3)× N1(P

op
0,1)→ N1(P

op
0,3)
)
.

Thus, functoriality imposes
U(γ,j)(i) = idU(γ,j)(23) ⊕U(γ,j)(012 > 02), (5.2.9)
U(γ,j)(i)′ = U(γ,j)(123 > 13)⊕ idU(γ,j)(01) (5.2.10)

where the first non-constant summand is determined by (5.2.6) and the second
by (5.2.7). In particular, this systematises the ad hoc assignments in (5.1.11)
and (5.1.12).
Remaining 1-path and 2-paths. It remains to specify U(γ, j) on the ‘long
path’ in N1(P

op
0,3) and on N2(P

op
0,3). In contrast to paths induced by functoriality,

03 is simple, so
(ii) = (0123 > 03)

presents a genuine choice, and was not handled systematically in Section 5.1.1.
It is considered most naturally in conjunction with the two non-degenerate
elements in N2(P

op
0,3) to be mapped, as it is their (necessarily-)common com-

position:
0123

023 013

03

(ii)

id23∪[012>02] [123>13]∪id01

(5.2.6) (5.2.6)

(5.2.11)

First, note that, regardless of exit index, this square decomposes into two
triangles:

0123

023 013

03

id23∪[012>02] [123>13]∪id01

(5.2.6)

d2γ

(5.2.6)

(5.2.12)
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For j = 2 (using the labels in (5.1.10)), this reads

W ′ ⊕ 0⊕ V = W ′ ⊕ V

W ′ ⊕ V ′ W ⊕ V

K

idW ′⊕γV γ−1
W ⊕idV

γ⊕′

γW⊕γV

γ⊕

,

and for j = 1 (using the labels in (5.1.13)),

0⊕W ⊕ V = W ⊕ V

0⊕K = K W ⊕ V

K ′

id0⊕γ⊕=γ⊕ id0⊕W⊕idV =idW⊕idV

γK

γ⊕

γ⊕′

.

For both indices, the bottom triangle is filled by γ itself, and the top one has
a canonical filler. This suggests assigning to (ii) the outer-left concatenation:

U(γ,j)(ii) = U(γ,j)(0123 > 023) ∗U(γ,j)(023 > 03). (5.2.13)
Accordingly, U(γ, j)|N2(P

op
0,3) is determined by said fillers.

Let us specify the fillers in the case j = 2 explicitly.3 There is an interme-
diate triangle

W ′ ⊕ V

W ′ ⊕ V W ⊕ V

γ−1
W ⊕id

id⊕γV

γW⊕γV

(5.2.14)

filled by the direct sum of the degenerate 2-path s0(γV ), i.e.,

V

V ′ V

idVγV

γV

and the 2-path
W ′

W ′ W

γ−1
W

id

γW

3This will be systematised in Section 5.2.4 and can be skipped. In fact, we will prove that
even this concatenation needn’t be explicated. The case j = 2 is of special importance in
said section to the proof of Proposition 5.2.39.
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given, writing γ = γW temporarily, by4

Γ: ∆2 → BO(m), (t0, t1, t2) 7→ γ(t1, 1− t1).
Indeed, recalling Notation 5.2.4, we see that its edges are as desired:

(d0Γ)(t0, t1) = Γ(0, t0, t1) = γ(t0, 1− t0) = γ(t0, t1),

(d1Γ)(t0, t1) = Γ(t0, 0, t1) = γ(0, 1) = d1γ = W ′,

(d2Γ)(t0, t1) = Γ(t0, t1, 0) = γ(t1, 1− t1) = γ(t1, t0) = γ−1(t0, t1).

The two 2-paths put together (and reparametrised5) provide the right half

W ′ ⊕ V

W ′ ⊕ V ′ W ′ ⊕ V ′ W ⊕ V

K

γ−1
W ⊕id

id⊕γV
id⊕γV

γ⊕′
γ⊕′

id γW⊕γV

γ⊕

with the bottom right triangle filled by γ itself. The triangles on the left are
both filled by degenerate 2-paths. The (contractible) choice made in pasting
is never an issue – we have identified these desired 2-simplices as exactly those
that are not required to satisfy any further conditions.

When j = 1, the analogous finer triangulation is

W ⊕ V

K K W ⊕ V

K ′

idγ⊕γ⊕

γK
γK

id γ⊕

γ⊕′

which has the obvious degenerate fillers, and again γ itself in the lower right.
This concludes the construction of U≤2 : EX≤2 → V ↪→.

5.2.3. Ad dB
⊕O

0 . Before moving on to the induction step, we will construct
dB

⊕O
0 U(γ, j), the top face, with a closed-form formula (Construction 5.2.21) in

every dimension in a way that generalises the above constructions in dimen-
sions ≤ 2.

4The point of this elementary exposition is to show that one can fill such diagrams canonic-
ally, without having to appeal to non-constructive existence statements, contractibly-unique
as the results may be. A systematisation of this construction will play a central role in the
proof of Proposition 5.2.39.
5One can do this as visually prescribed by the diagram itself. We do not need a general
∞-categorical pasting scheme for this, but can do it instead within BO(n +m). For some
related recent progress on this in a slightly different context, see [42] and the references
therein.
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Lemma 5.2.15. Let (γ, j) ∈ P∆
k ⊂ EX k+1 and write, as before, 0, i 7→ V0,i =

(γ, j)|i−1 for the edges of U(γ, j) ∈ [Path[k+2], B⊕O], and similarly i, ` 7→ Vi,`,
with 1 ≤ i < ` ≤ k + 2 throughout.6

(1) We have Vi,` = N(γ, j)|i−1 for 1 ≤ i ≤ j < ` ≤ k + 2, and zero
otherwise.

(2) Let α1 < · · · < αn be a sequence of natural numbers within the interval
[1, k + 2]. Let N = Nα ∈ {1, . . . , n} be the smallest index such that
αN > j if it exists, and set N = 1 otherwise. Then we have

Vα1,...,αn =

{
VαN−1,αN

= VαN−1,k+2 6= 0, N > 1,

0, N = 1.

Consequently, there are no non-trivial direct sums in the top face.

Proof. First, note that every top edge Vαβ, 1 ≤ α < β ≤ k + 2, is within
the fibre BO(m) of the link projection, since it is the connecting edge in the
restriction of U(γ, j) to Path[0, α, β] ⊂ Path[k + 2], which can be depicted as
the 2-face

α β

0

Vαβ

V0,α V0,β

in B⊕O2
∼= V ↪→1 , given by construction by (γ, j)|α−1,β−1 : V0,α → V0,β underlied

by γ|α−1,β−1 : Vα,β⊕V0,α → V0,β. Now, by construction, (γ, j)|0,...,j−1 is low and
(γ, j)|j,...,n is upper. Thus the restriction of U(γ, j) to Path[0, i, `] for ` ≤ j is
wholly within BO(n), so Vi,` = 0. Similarly, it is wholly within BO(n+m) for
` > i > j, so then Vi,` = 0 as well. Thus, Vi,` 6= 0 implies 1 ≤ i ≤ j < ` ≤ k+2.

Conversely, if the inequalities are satisfied, then V0,i−1 is low and V0,`−1

is upper, so the connecting edge Vi,` ∈ BO(m) is non-zero, so in toto the
un-equalities specify exactly the non-zero top edges.

Note that
Vi,` = Vi,`′ if j < `′ ≤ k + 2 as well, (5.2.16)

since γ|i−1,`−1 : Vi,` ⊕ V0,i−1 → V0,` and γ|i−1,`′−1 : Vi,`′ ⊕ V0,i−1 → V0,`′ have
the same source γ|i−1 = Vi,` ⊕ V0,i−1 = Vi,`′ ⊕ V0,i−1 ∈ BO(n + m)0. In
particular, the first statement is well-defined. That Vi,` = N(γ, j)|i−1 is imme-
diate: N(γ, j) = pr2(γ|1,...,j−1), so N(γ, j)|i−1 = pr2(γ|i−1), so γ|i,` is of type
γ|i−1,`−1 : N(γ, j)|i−1 ⊕ V0,i → V0,`.

The second statement is a straightforward consequence. We have
Vα1,...,αn = Vαn−1αn ⊕ · · · ⊕ VαN−1,αN

⊕ · · · ⊕ Vα1,α2 .

By the above, the summands to both sides of VαN−1,αN
are zero. That

VαN−1,αN
= VαN−1,k+2

6We need not assume that U has been constructed, but may use instead the construction of
Section 5.2.1 for these edges, since the statement concerns only the restrictions of U(γ, j)
to Path[0, α, β] ⊂ Path[k + 2].
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follows from (5.2.16) by setting `′ = k + 2. If there exists no N as described,
then every summand is zero since each V0,αk

is in BO(n). If N = 1, then each
V0,αk

is in BO(n+m) so that every summand is again zero. □

Remark 5.2.17. The simplification noted in Lemma 5.2.15 is specific to our
stratification depth being 1 and not higher. If it was higher, we would see
nontrivial sums appearing in the dB⊕O

0 -face as well.

Before we proceed, let us recall a fundamental fact about the simplicial
category Path[n]:

Proposition 5.2.18 ([51, §1.1.5]; [52, 00LL]; [52, 00LM]). For
i, ` ∈ [n], there is a canonical isomorphism

HomPath[n](i, `) ∼= (∆[1])×(`−i−1)

of simplicial sets. Consequently, there is a canonical homeomorphism∣∣HomPath[n](i, `)
∣∣ ∼= [0, 1]×(`−i−1).

Proof. The first step is the construction of an isomorphism between
(∆[1])×n and the nerve of the power poset P({1, . . . , n}) of the set {1, . . . , n},
ordered by inclusion (and not reverse inclusion). This elementary observation
was stated in [52] without proof, so, for completeness, we will provide one.

A vertex of (∆[1])×n is specified exactly by a function from {1, . . . , n} to
the 2-element set (the vertices of ∆[1]), which specifies exactly a subset of
{1, . . . , n}. More generally, a k-simplex φ = (φi)

n
i=1 of (∆[1])×n is a collection

of n poset maps φi : [k]→ [1]; On the other hand, a k-simplex
α̂ =

(
α0 ⊆ · · · ⊆ αk

)
∈ Nk (P({1, . . . , n}))

is a non-decreasing sequence of subsets αx ⊆ {1, . . . , n}. Now, we may interpret
φi(x) ∈ [1] as answering the question whether or not the element i ∈ {1, . . . , n}
belongs to αx, the value 0 giving the affirmative. Thus, the function

(∆[1])×nk → P({1, . . . , n})k,
φ = (φi)

n
i=1 7→ (αxφ)

k
x=0

with
αxφ = {i ∈ {1, . . . , n} : φi(x) = 0}

is a bijection. It is well-defined (the subset inclusions hold) since each φi is
a poset map. Varying k, these functions are easily seen to assemble into an
isomorphism of simplicial sets.

The subsequent isomorphism
N• (P({1, . . . , n})) ∼= N•(P

op
0,n+1)

is given by taking complements of subsets and thereby un-un-reversing the
order. It is spelled out in [52], as is the homeomorphism that is the second
statement. Suffice it to say that a vertex β ∈ N0(P

op
0,n+1) is a subposet of [n+1]
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of type β = 0, β′, n+ 1 with β′ ⊆ {1, . . . , n}, and so the rule

N0

(
P op
0,n+1

)
→ N0 (P)

β 7→ {1, . . . , n}r β′

defines a bijection. It is easily seen to lift to an isomorphism of simplicial
sets. □

Remark 5.2.19. Because, in the proof of Proposition 5.2.18, the value 0 is
(necessarily) taken to give the affirmative, the resulting cubes, when depicted in
the standard way (mapping the vertices of (∆[1])×n according to φ = (φi)

n
i=1 7→∑

i φi(0)i with i ∈ Rn the i’th standard basis vector), will differ from those
in Examples 5.2.20 and 5.2.33 below, but only up to a change of basis. For
our purposes, this is not a problem: a precise choice of basis will be used only
in the proof of Lemma 5.2.37 which is a convexity argument after which the
choice may be reverted. Convexity is preserved under linear transformations.

Occasionally, we will call the underlying posets P (op)
i,` ‘cubes’ as well. When

we do, Proposition 5.2.18 will be understood.

Example 5.2.20. In particular, Lemma 5.2.15 fully specifies the vertices of
P op
1,k+2 under U. The k-cube P op

1,k+2 can be depicted for k = 3 as follows:

12345 1235

1345 135

1245 125

145 15

• If j = 1, the image of this cube under U(γ, 1) must have all vertices
equal to V1,5 = N0 := N(γ, j)|0, so non-degenerate sequences S ∈
N3(P

op
1,5) of arrows from (the image of) 12345 to 15 must all be of type

N0 → N0 → N0 → N0.
• If j = 2, the image under U(γ, 2) must be of type

N1 N1

N0 N0

N1 N1

N0 N0
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hence non-degenerate sequences as above, deleting repetitions again,
must be of the following types:

N1 → N0 → N0 → N0

N1 → N1 → N0 → N0

N1 → N1 → N1 → N0

On the other hand OpN(γ, j) is a j − 1 = 1-path of type (N1 → N0).
• If j = 3, we have

N2 N2

N2 N2

N1 N1

N0 N0

so non-degenerate sequences as above must be of the following types:
N2 → N2 → N0 → N0

N2 → N2 → N2 → N0

N2 → N1 → N0 → N0

N2 → N1 → N1 → N0

N2 → N2 → N1 → N0

On the other hand, OpN(γ, j) is a j − 1 = 2-path of type

N1

N0 N2

.

• If j = 4, we have

N3 N2

N3 N2

N3 N1

N3 N0
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so non-degenerate sequences as above must be of the following types:
N3 → N3 → N3 → N0

N3 → N3 → N2 → N0

N3 → N3 → N1 → N0

N3 → N2 → N2 → N0

N3 → N2 → N1 → N0

We leave a depiction of the j − 1 = 3-path OpN(γ, j) to the reader.

An examination of Example 5.2.20 is sufficient to reach the following An-
satz:

Construction 5.2.21. Let (γ, j) ∈ P∆
k and let n ≥ 0 be a natural number.

With each sequence α = (α0 > · · · > αn) ∈ Nn(P
op
i,j ) where 1 ≤ i ≤ j < ` ≤

k + 2, we can associate the map
A : [n]→ [j − 1],

t 7→ j − 1−
(
αtNt−1 − 1

)
in ∆, where

Nt := Nαt

is defined with respect to αt = (αt1 < · · · < αtnt
) as in Lemma 5.2.15. Since

OpN(γ, j) ∈ BO(m)j−1, we may pull it back along A for any α ∈ Nn =
Nn(P

op
i,j ) to obtain, with a slight abuse of notation, a map

OpN(γ, j) : Nn → BO(m)n,

α 7→ A∗OpN(γ, j).

Lemma 5.2.22. For 1 ≤ i ≤ j < ` ≤ k + 2, the map OpN(γ, j) : N•(P
op
i,` )→

BO(m)• of Construction 5.2.21 is an ∞-functor.

Proof. We must first prove that the map A : [n] → [j − 1] of Construc-
tion 5.2.21 is well-defined and monotone. Since Nt is the smallest index such
that αtNt

> j (if it exists), we have αtNt−1 ≤ j, and so A(t) = j − αtNt−1 ≥ 0.
Moreover, αtNt−1 ≥ 1 since αt is a sequence of numbers that starts at i ≥ 1,
hence A(t) ≤ j − 1. We can never have Nt = 1 since i ≤ j < `. As for
monotonicity, we must show αtNt−1 ≥ αt

′
Nt′−1 for t ≤ t′ in [n]. That αt > αt

′

means αt′ ⊆ αt as posets. We have αtNt−1 = max{x ∈ αt : x ≤ j} and since
{x ∈ αt′ : x ≤ j} ⊆ {x ∈ αt : x ≤ j}, we obtain

αt
′

Nt′−1 = max{x ∈ αt′ : x ≤ j} ≤ max{x ∈ αt : x ≤ j} = αtNt−1.

Incidentally, this also shows Nt ≤ Nt′ : there can only be more indices ∗ in
{1, . . . , nt′} where αt′∗ is at most j, not fewer.

Finally, observe that the map φ : Nn → Hom∆([n], [j − 1]), α 7→ φ(α) := A
is manifestly simplicial, and therefore so is OpN(γ, j). Indeed, let δ : [n′]→ [n]
be a poset map. Then (δ∗α)t = αδ(t) for t ∈ [n′], so

φ(δ∗α)(t) = (δ∗α)tN(δ∗α)t−1 − 1 = α
δ(t)
N

αδ(t)−1 − 1 = A(δ(t)) = δ∗(φ(α))(t).
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□
Remark 5.2.23. Construction 5.2.21 immediately gives

OpN(γ, j)|t = N(γ, j)|αt
Nt−1−1,

since (cf. [52, 003M]) Op reverses the operation j − 1−. Consequently,
Vα = OpN(γ, j)|α

for α = (α1 < · · · < αn) in the situation of Lemma 5.2.15.

Lemma 5.2.24. The maps of Lemma 5.2.22 lift to a function
OpN : P∆

k →
[
Path[1, . . . , k + 2], B⊕O

]
.

Proof. For pairs i, ` ∈ {1, . . . , k + 2} that do not satisfy 1 ≤ i ≤ j <
` ≤ k + 2, we let OpN(γ, j) : N•(P

op
i,` ) → BO• (recall Notation 5.1.5) be the

constant map to the zero vector space. This defines OpN(γ, j) on all morphism
spaces, so it remains to verify functoriality, which holds for trivial reasons: if
α : i→ ` and β : `→ `′, then either

• OpN(γ, j)(α) 6= 0, in which case OpN(γ, j)(β) = 0 since `, `′ > j,
hence OpN(γ, j)(β ∪ α) = 0 ⊕ OpN(γ, j)(α) = OpN(γ, j)(α), which
holds since Nα∗ = N(β∪α)∗ follows immediately from the definition.
Appending β to the head of α does not change the first index for
which the sequence becomes larger than j;
• or OpN(γ, j)(β) 6= 0 in which case OpN(γ, j)(α) = 0 since ` ≤ j,

hence OpN(γ, j)(β ∪ α) = OpN(γ, j)(β) ⊕ 0 = OpN(γ, j)(β), which
holds, not because Nα∗ = N(β∪α)∗ which is not the case here, but
because βNβ−1 = (β ∪ α)Nβ∪α−1. Appending α to the foot of β does
not change the last element in the sequence before it grows larger than
j, since that element is already within β;
• or both OpN(γ, j)(α) and OpN(γ, j)(β) are zero, in which case it will

suffice to show that OpN(γ, j)(β ∪ α) = 0 = 0 ⊕ 0 as well. This is
clear if i, `, `′ ≤ j or if i, `, `′ > j. But i, ` ≤ j and `, `′ > j cannot
coincide, so these are all the cases.

This argument applies mutatis mutandis to unions of chains of posets to show
functoriality on higher morphisms. □
Proposition 5.2.25. The functions

OpN : P∆
∗ →

[
Path[1, . . . , ∗+ 2], B⊕O

]
of Lemma 5.2.24 extend

U≤1 : EX≤1 → V ↪→.

Proof. The only overlap in dimensions ≤ 1 is within P∆
0 ⊂ EX 1. Here,

the equality of the two maps is trivial, but we include the proof for com-
pleteness. For (γ, 1) ∈ P∆

0 and so for i = 1 and ` = 2, we have that
U(γ, 1)|N0(P

op
1,2)

: 12 7→ W = N(γ, j) = pr2(γ0) is the normal component of
(γ, 1). On the other hand, taking α = 12 ∈ N0(P

op
1,2) yields the constant A =

id: [0] → [0] and so OpN(γ, 1)(12) = id∗OpN(γ, j) = Op(pr2(γ0)) = pr2(γ0)
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since Op is the identity on vertices. (The compatibility of the vertex values
with any extension of U≤1 in higher dimensions was noted in Remark 5.2.23.)

Now, for k ≥ 1, let S be a simplicial operator of type S = Σ∗ for
Σ: [k + 1]→ [1]

in ∆. For (γ, 1) ∈ P∆
0 again, assume that S(γ, 1) ∈ P∆

k ⊂ EX k+1 is also
vertical. This amounts assuming that Σ is surjective. In this situation, OpN
and U≤1 may be compared, and we must show that

U≤1(S(γ, 1))|Path[1,...,k+2]
def
= SU(γ, 1)|Path[1,...,k+2] = OpN(S(γ, 1)) (5.2.26)

where the LHS is the restriction to Path[1, . . . , k + 2] ⊂ Path[k + 2] of
SU(γ, 1) : Path[k + 2]→ B⊕O.

We have N(S(γ, 1)) = N(Sγ, ]S1) = pr2(Sγ|0,...,]S1), where ]S applies ]’s
and [’s to the exit index 1 according to S. The underlying simplex map Σ is
determined by a unique index

eΣ ∈ {1, . . . , k + 1}
such that Σ(x) = 0 for x ≤ eΣ−1 and Σ(x) = 1 for x ≥ eΣ. It is straightforward
to see that

]S1 = eΣ,

so
OpN(S(γ, 1)) = Oppr2(Sγ|0,...,eΣ−1) = pr2(Op(Sγ|0,...,eΣ−1)) ∈ BO(m)eΣ−1.

But
(Sγ)|0,...,eΣ−1 = ([eΣ − 1] ↪→ [k + 1]

Σ−→ [1])∗(γ)

= ([eΣ − 1]→ [0] ↪→ [1])∗γ

= (s0)
eΣ−1d1γ

= (s0)
eΣ−1γ0,

and Ops0 = s0−0Op = s0Op in dimension 0, and pr2 commutes with Op as
well as with any simplicial operator, so we have

OpN(S(γ, 1)) : α 7→A∗Oppr2(Sγ|0,...,eΣ−1) = pr2A
∗Op(s0)

eΣ−1γ0

= pr2A
∗(s0)

eΣ−1Opγ0 = pr2A
∗(s0)

eΣ−1γ0

= pr2(s0)
nγ0 = (s0)

npr2γ0

for α ∈ Nn(P
op
i,` ) and 1 ≤ i ≤ eΣ < ` ≤ k + 2, and (the n-fold degenerate) zero

otherwise.
On the other hand, Σ: [k + 1]→ [1] induces a map

Σ+1 : [k + 2]→ [2]

defined by
Σ+1(0) = 0, and Σ+1(i) = Σ(i− 1) + 1
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for 1 ≤ i ≤ k+2. Along the under-∞-category identifications V ↪→∗ ∼= (B⊕O)∗+1,
we have that S(U(γ, 1)) ∈ V ↪→k+1 corresponds to

S+1(U(γ, 1)) := Σ∗
+1(U(γ, 1))

in (B⊕O)k+2 (see Lemma 4.3.4), where we identified U(γ, 1) with the corres-
ponding element

U(γ, 1) : Path[2]→ B⊕O in (B⊕O)2.

The restriction of the induced map Σ+1 : Path[k+2]→ Path[2] to Path[1, . . . , k+
1] factors through Path[1, 2] ⊂ Path[2] by construction and defines the LHS of
(5.2.26) as the composition

Path[1, . . . , k + 2]
Σ+1|−−→ Path[1, 2]

U(γ,1)|−−−−→ B⊕O.

Let now eΣ be as above, so that eΣ + 1 ∈ {2, . . . , k + 2} fulfills the analogous
function for the restriction Σ+1|: we have Σ+1(x) = 1 for 1 ≤ x ≤ eΣ =
eΣ + 1 − 1 and Σ(x) = 2 for x ≥ eΣ + 1. Suppose, then, that 1 ≤ i < ` ≤
k + 2. We have SU(γ, 1) : i, ` 7→ U(γ, 1)(id1) = idB⊕O = 0 ∈ BO if Σ+1(i) =
Σ+1(`) = 1, i.e., if i, ` ≤ eΣ. Similarly, SU(γ, 1) : i, ` 7→ U(γ, 1)(id2) = 0
if Σ+1(i) = Σ+1(`) = 2, i.e., if i, ` > eΣ. If, however, i ≤ eΣ and ` > eΣ,
then SU(γ, 1) : i, ` 7→ U(γ, 1)(12) = W = pr2(γ0). In both cases, the result
coincides with the value of the RHS of (5.2.26).

Generalising this observation to higher dimensions is straightforward: let
α ∈ Nn(P

op
i,` ). If i, ` ≤ eΣ or i, ` > eΣ, then SU(γ, 1) : α 7→ (s0)

n0, and if
i ≤ eΣ and ` > eΣ, then SU(γ, 1) : α 7→ (s0)

npr2γ0. □

5.2.4. The induction step. Let us write

EX≤k+1 := (EX≤k+1 r EX≤k) ∪ EX≤k

for the simplicial subset of EX generated by EX≤k together with the non-
degenerate exit (k + 1)-paths in P∆

k ⊂ EX k+1 (cf. Remark 5.1.18), and let us
assume a map

U≤k : EX≤k → V ↪→

is given which satisfies
U≤k|≤1 = U≤1 (5.2.27)

and
dB

⊕O
0 U≤k(γ, j)

def
= U≤k(γ, j)|Path[1,...,∗+2] = OpN(γ, j) (5.2.28)

for all (γ, j) ∈ P∆
∗ ⊂ (EX≤k+1)∗+1, with OpN defined as in Construction 5.2.21.

Proposition 5.2.25 states exactly that this equality holds in the base case k = 1.
Moreover, this is consistent by Lemma 5.2.15: as noted there, the condition
that U≤k extend U≤1 fixes the spaces Vi,` for 1 ≤ i < ` ≤ k + 2 through the
induced restrictions to the subcategories Path[0, α, β] ⊂ Path[k+2], and these
spaces coincide with the values of OpN wherever they overlap.

There is a final inductive assumption which we will formulate and justify
in the proof of Proposition 5.2.39; see immediately after (5.2.49). It involves a
construction that becomes necessary for the first time within said proof, which
is why we chose to formulate it therein.
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Now, having fixed U≤k(γ, j) on every B⊕O-face, i.e., on every proper sim-
plicial subcategory of Path[k + 2], we have in particular fixed it on every
hom-space HomPath[k+2](i, `) for (i, `) 6= (0, k + 2).

It remains then to specify it on all of HomPath[k+2](0, k+2) = N•P
op
0,k+2. The

initial object of P op
0,k+2 is [k + 2] = 0, . . . , k + 2, and its final object is 0, k + 2.

All arrows with domain [k + 2] are composite (recall Definition 5.1.6) except
for the arrow [k + 2] > 0, k + 2, so this is the only 1-morphism of Path[k + 2]
whose image is not determined by the inductive hypothesis. For instance,
01234 > 014 = (01 > 01) ∪ (1234 > 14), and the value of both factors is
determined already by U≤k. Generally, any 1-morphism [k + 2] > [k + 2]r β
with β ⊂ {1, . . . , k + 1} a proper subset is determined by functoriality in the
same way, as can be seen by decomposing the target nontrivially and using
the initiality of both factors in the corresponding decomposition of [k + 2].
Namely, take δ ∈ {1, . . . , k + 1}r β, and write
[k+2]rβ = (0, . . . , δ ∩ ([k+2]rβ))∪ (δ, . . . , k + 2∩ ([k+2]rβ)) = βc

L ∪βc
R.

Then
[k + 2]r β > 0, k + 2 = (0, . . . , δ > βc

L) ∪ (δ, . . . , k + 2 > βc
R).

Consequently, the images of all higher morphisms of whom [k+2] > 0, k + 2
is a side are likewise undetermined; since we are mapping from the nerve of
P op
0,k+2, this means (the images of the) sequences with long edge [k + 2] >

0, k + 2. By the long edge of an n-chain S ∈ Nn, n ≥ 1, we mean its pullback
along [1] ↪→ [n], 0 7→ 0; 1 7→ n. Clearly, if [k + 2] > 0, k + 2 is an edge of S,
then it is also its long edge since 0, k + 2 is final and [k + 2] is initial.

It will therefore suffice to provide construct images for the simplices of
N•(P

op
0,k+2) with long edge [k + 2] > 0, k + 2, as well as an image for this 1-

morphism itself. We have seen that the image of the latter need obey no other
condition. Our strategy will be to generalise the idea of the decomposition
in (5.2.12). To this end, we will first identify where exactly the path γ ∈
BO(n+m)k+1 fits in the image of the (k + 1)-cube P0,k+2.

Let us write N∗ := N(γ, j)|∗, as in Example 5.2.20.

Lemma 5.2.29. In the situation of Lemma 5.2.15, let α = (α1 < · · · < αn)
be a sequence within [1, k + 2]. Then we have

U(γ,j)(0, α) =

{
NαN−1−1 ⊕ (γ, j)|α1−1, N > 1,

(γ, j)|α1−1, N = 1.

Proof. This follows immediately from Lemma 5.2.15 and Proposition 5.2.25
after decomposing the space as V0,α = Vα ⊕ V0,α1 . □
Corollary 5.2.30. In the situation of Lemma 5.2.15, for 0 < i < k + 2, we
have

U(γ,j)(0, i, k + 2) = γ|i−1,

and
U(γ,j)(0, k + 2) = γ|k+1.
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Proof. The second equality is clear. Now, Lemma 5.2.29 yields

U(γ,j)(0, i, k + 2) =

{
Ni−1 ⊕ (γ, j)|i−1, i ≤ j

(γ, j)|i−1, i > j.

If i ≤ j, then (γ, j)|i−1 is low, so γ|i−1 = Ni−1 ⊕ π (γ|i−1), and if i > j, then
(γ, j)|i−1 is upper, so γ|i−1 = (γ, j)|i−1 (recall that we suppress ι). □

Now, all of N•(P
op
0,k+2) is to map to BO(n +m) = Sing•BO(n +m) under

U(γ, j). Therefore, by the adjunction between |−| and Sing•, this is equivalent
to mapping out of |N•| to the space BO(n +m) instead. We will specify the
‘location’ of γ inside (the image of) N• by means of an embedding ∆k+1 ↪→ |N•|.

Construction 5.2.31. The vertices featuring in Corollary 5.2.30 specify a
(topological) (k+1)-simplex within |N•|. Namely, since, by Proposition 5.2.18,
|N•| is canonically homeomorphic to the (k + 1)-cube, we may define

5 : ∆k+1 ↪→ |N•|
to be (i.e., map homeomorphically onto) the subset of |N•| given by the convex
hull of the vertices {0, i, k + 2 : 0 < i < k+2}∪{0, k + 2} ⊂ |N•| ∼= [0, 1]×(k+1).
This is indeed a topological (k + 1)-simplex: shifting and rotating the cube
so that the (image under this homeomorphism of) 0, k + 2 lies at the origin,
it is easily checked (vis-à-vis the proof of Proposition 5.2.18, keeping in mind
Remark 5.2.19) that the points (given by the images of) 0, i, k + 2 give exactly
the unit vectors on the coordinate axes.

Writing
4 := |N•|r5

for the closure within [0, 1]×(k+1) of the complement, we obtain the decompos-
ition

|N•| ∼= 4∪∂ 5 (5.2.32)
where the common boundary ∂ is the convex hull of the vertices {0, i, k + 2 :
0 < i < k + 2}.

Example 5.2.33. Consider an exit 3-path (γ, 3) ∈ P∆
2 of index 3:

K

W1 ⊕ V1

W0 ⊕ V0 W2 ⊕ V2

.

The diagram depicts the underlying path γ ∈ BO(n + m)3. The edges of
U(γ, 3) ∈ B⊕O4 are given, due to (5.2.27), as follows:{

01 7→ V0, 02 7→ V1, 03 7→ V2, 04 7→ K,

14 7→ W0, 24 7→ W1, 34 7→ W2
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and the remaining edges are zero. Now, the image of the 3-cube P op
0,4

01234 0124

0234 024

0134 014

034 04

under U(γ, j) looks as follows:

W2 ⊕ V0 W1 ⊕ V0

W2 ⊕ V1 W1 ⊕ V1

W2 ⊕ V0 W0 ⊕ V0

W2 ⊕ V2 K

id⊕γV 01

γ−1
W12⊕id

id⊕γV 01

γ−1
W01⊕idid−1

W12⊕id

id⊕γV 12

id⊕γV 02

γ−1
W02⊕id

γ⊕0

γ⊕2

id⊕1

Painting in the outer-left concatenation chosen to be the image of 01234 > 04
according to the discussion in Section 5.2.2 (in green) and the (edges of the)
‘lower’ tetrahedron given by γ ∈ BO3 itself (in blue), we see that

W2 ⊕ V0 W1 ⊕ V0

W2 ⊕ V1 W1 ⊕ V1

W2 ⊕ V0 W0 ⊕ V0,

W2 ⊕ V2 K

γW01⊕γV 01

γW02⊕γV 02

γW12⊕γV 12

homotopy-commutes by inspection. In terms of Construction 5.2.31, the 3-
simplex with the blue/cyan edges geometrically-realises to 5, and the cube
with5 cut off gives4. The 2-dimensional instantiation of this idea is depicted
in (5.2.12).

As Example 5.2.33 suggests, the next step in our strategy is to define a
new poset P op

0,k̂+2
such that the full subposet P op

0,k+2 r {0, k + 2} of the original
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poset given by removing its final object is embedded into it,
P op
0,k+2 r {0, k + 2} ⊂ P op

0,k̂+2
, (5.2.34)

and such that we have a homeomorphism∣∣∣N•

(
P op

0,k̂+2

)∣∣∣ ∼= 4. (5.2.35)

Definition 5.2.36. By P op

0,k̂+2
we denote the poset whose objects are the same

as those of P op
0,k+2r{0, k + 2}, and whose arrows are those of the latter together

with the new primitive arrows
0, i, k + 2→ 0, `, k + 2

whenever 0 < i < ` < k + 2.

Lemma 5.2.37. Definition 5.2.36 satisfies (5.2.34) and (5.2.35).

Proof. That (5.2.34) is satisfied is clear by the construction. Let us ob-
serve now that (5.2.34) lifts as in the diagram∣∣N•

(
P op
0,k+2 r {0, k + 2}

)∣∣ ∣∣∣N•

(
P op

0,k̂+2

)∣∣∣
[0, 1]×(k+1)

to an embedding into the (k + 1)-cube. Indeed, any topological simplex in∣∣∣N•

(
P op

0,k̂+2

)∣∣∣ can be sent to the convex hull of the images of its vertices within
[0, 1]×(k+1). This makes the diagram above commute, since the map∣∣N•

(
P op
0,k+2 r {0, k + 2}

)∣∣ ↪→ [0, 1]×(k+1)

is given by restricting |N• (P0,k+2)| ↪→ [0, 1]×(k+1), and the latter is easily seen
(by examining the proof of Proposition 5.2.18) to be itself defined by sending
simplices to the convex hulls of the images of their vertices. (The images of
the vertices are fixed explicitly in said proof.)

Note now that the intersection of the image 4̃ of
∣∣∣N•

(
P op

0,k̂+2

)∣∣∣ and 5 is
given exactly by the convex hull of {0, i, k + 2 : 0 < i < k + 2}, which is by
construction the image of the geometric realisation of the k-simplex

(0, 1, k + 2→ 0, 2, k + 2→ · · · → 0, k + 1, k + 2)

from N•

(
P op

0,k̂+2

)
. Therefore, we can glue with 5 and stay within the cube:

4̃ ∪∂ 5 ⊆ [0, 1]×(k+1).

It remains to show the reverse inclusion, which will imply that 4̃, and therefore∣∣∣N•

(
P op

0,k̂+2

)∣∣∣, are homeomorphic to 4.
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The (k + 1)-cube itself being the convex hull of its corners, it is equal to
the convex hull of the union of 4̃ and 5. By [66, Theorem 3.3], then,7 it is
the union of all convex combinations of these two sets:

[0, 1]×(k+1) =
⋃
λi≥0,

λ1+λ2=1

(
λ14̃+ λ25

)
This means that it suffices to show that given points x ∈ 4̃ and y ∈ 5, the
line segment L connecting x and y lies within 4̃∪5. This is a straightforward
application of the intermediate value theorem, as we will now show.

Shifting and rotating the cube such that the image 0, k + 2 is at the origin
and the image i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rk+1 of 0, i, k + 2 is the i’th unit vec-
tor among the k+1 coordinate axes (cf. the discussion in Construction 5.2.31),
we place L as well as all of the (k+1)-cube inside the non-negative orthant of
Rn+1. We may assume that neither point lies on the common boundary

∂ =

{
k+1∑
i=1

λii :
∑

λi = 1

}
,

since otherwise L lies within (at least) one of the two sets by their convexity,
and we are done. Now, 5 is the convex hull of {0, i}k+1

i=1 , so

y =
k+1∑
i=1

λii with
∑

λi < 1.

On the other hand, 4̃ is the convex hull of{
k+1∑
i=1

µii : µi ∈ {0, 1}, (µi)k+1
i=1 6= 0×(k+1)

}
where there exist evidently 2k+1−1 possibilities for µ = (µi)

k+1
i=1 ∈ {0, 1}{1,...,k+1}r

{const0}. We obtain

x =
∑

j∈{1,...,2k+1−1}∑
λj=1

λj
∑

i∈{1,...,k+1}
µji∈{0,1}∑

i µ
j
i≥1

µji i

and, writing λ′i :=
∑

j∈{1,...,2k+1−1}∑
λj=1

λjµ
j
i , we have

x =
k+1∑
i=1

λ′ii with
∑
i

λ′i 6= 1

7It is not true in general that the convex hull of a collection of points in euclidean space is
the union of the convex hulls of two subsets that partition the collection with non-empty
intersection.
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due to x /∈ ∂ by assumption. But since
∑

i µ
j
i ≥ 1 and

∑
λj = 1, we have∑

λ′i ≥ 1 in any case, so we must have∑
λ′i > 1

Thus, the continuous function
L→ R,∑
νii 7→ 1−

∑
νi

is negative at x and positive at y, and so is zero at some Z ∈ L. But then
Z ∈ ∂, so, writing

L = LyZ ∪Z LZx
where Lαβ is the line segment connecting the points α and β, we have, since
Z ∈ 4̃∩5, that LyZ ⊆ 5 and LZx ⊆ 4̃ by convexity, and therefore L ⊆ 4̃∪5.
This implies [0, 1]×(k+1) ⊆ 4̃ ∪5, as desired. □

We summarise the resulting strategy of proof for Theorem 5.1.3 in the
following

Corollary 5.2.38. Providing, for each (γ, j) ∈ P∆
k ⊂ EX k+1 r EX≤k, an

∞-functor
N•

(
P op

0,k̂+2

)
→ BO(n+m),

whose
• restriction to N• (P0,k+2) r {0, k + 2} agrees with the restriction of
U≤k, and whose
• value on

(
0, 1, k + 2→ 0, 2, k + 2→ · · · → 0, k + 1, k + 2

)
∈ Nk

(
P
0,k̂+2

)
is dk+1(γ) ∈ BO(n+m)k

yields an extension U≤k+1 : EX k+1 → V ↪→ of U≤k.

Proof. First, let us summarise what we have already proved. Given such
an exit path (γ, j), it suffices, by the discussion at the beginning of this section,
to provide an extension of U≤k on N•

(
P op
0,k+2

)
. Using the bijection

HomsSet

(
N•
(
P op
0,k+2

)
, Sing•BO(n+m)

) ∼= HomTop (|N•| , BO(n+m)) ,

and combining Lemma 5.2.37 with (5.2.32) from Construction 5.2.31, we see
that it suffices to provide two maps of type∣∣∣N•

(
P op

0,k̂+2

)∣∣∣→ BO(n+m)

5 ∼= ∆k+1 → BO(n+m)

such that
• they agree on ∂ ∼= ∆k, the convex hull of {0, i, k + 2 : 0 < i <
k + 2}, which is the intersection within the unit (k + 1)-cube of the
two domains; and
• they extend U≤k.
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Now, we can define 5 to map to γ ∈ BO(n +m)k+1. Since 5 ∼= ∆k+1 is
given by identifying 0, i, k + 2 with i − 1 and 0, k + 2 with k + 1, we see that
the sequence

(
0, 1, k + 2→ · · · → 0, k + 1, k + 2

)
∈ Nk

(
P
0,k̂+2

)
is exactly the

(k + 1)’st face, so its value is dk+1γ by construction.
The statement will follow once we show that γ : 5 → BO(n + m) it-

self is compatible with U≤k. The only definitional overlap is at the vertices
and those edges that are of type 0, i, k + 2 > 0, k + 2, since the other edges
0, i, k + 2 → 0, `, k + 2, i < `, are not in P op

0,k+2. This verifies that there are
no overlapping higher simplices. Now, Corollary 5.2.30 states exactly that
the values of the vertices agree. The value of U≤k on the edges is fixed by
U≤k|≤1 = U≤1, the inductive hypothesis (5.2.27). Here, we see that there is
agreement by construction: setting γ′ := (∆{i− 1, k + 1} ↪→ ∆[k + 1])∗ γ, we
apply the definition from Section 5.2.1: U≤1(γ

′, 1)(012 > 02) = γ′. □

Notation. 4 = 4• := N•

(
P
0,k̂+2

)
, ∂ :=

(
0, 1, k + 2→ · · · → 0, k + 1, k + 2

)
∈

4k.

By Corollary 5.2.38, the following concludes the proof of Theorem 5.1.3.

Proposition 5.2.39. For each (γ, j) ∈ P∆
k ⊂ EX k+1 r EX≤k, there exists an

∞-functor
U4 : 4→ BO(n+m)

that extends U≤k and is such that U4(∂) = dk+1(γ).

Proof. All simplices in4 that have at most one vertex from ∂ are already
determined by U≤k and functoriality, as noted at the beginning of this section.
Consequently, the non-degenerate (k+1)-simplices of 4 are exactly those that
possess non-degenerate edges in ∂. Setting U4(∂) = dk+1(γ), we will exhibit
natural fillers for these, generalising the observations in Section 5.2.2. Let

0, α0, k + 2 ≥ · · · ≥ 0, αr, k + 2 ≥ 0, βr+1, k + 2→ · · · → 0, βr+s, k + 2

(5.2.40)
be an element of 4r+s, which (the element) we will denote by X, where, with
a slight abuse of notation,

[1, k + 1] ⊇ α0 ⊇ · · · ⊇ αr ⊇ βr+1 ≤ · · · ≤ βr+s

with non-empty sequences αi =
(
αij
)ri
j=1

and elements βi, s ≥ 1. Observe that
if Nαi = 1, then also Nαi′ = 1 for all i′ ≥ i. We have α0

1 ≤ · · · ≤ αr1 due to the
subset inclusions, and therefore

α0
1 ≤ · · · ≤ αr1 ≤ βn+1 ≤ · · · ≤ βr+s. (5.2.41)

Let, then, I ∈ {−1, 0, . . . , r + s} be the the smallest index such that αI′1 > j
or else βI′ > j for all I ′ ≥ I + 1. The adverb ‘else’ is warranted by (5.2.41).
If the former, this implies that NαI′ = 1, and so αI′1 > j, for all I ′ ≥ I. Now
Lemma 5.2.29 and Corollary 5.2.30 imply that (the 1-skeleton of) U4

(γ,j)(X)
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must be of type
Nα0

N−1−1 ⊕ (γ, j)|α0
1−1 → · · · → NαI

N−1−1 ⊕ (γ, j)|αI
1−1 →

(γ, j)|αI+1
1 −1 → · · · → (γ, j)|αr

1−1 →
γ|βr+1−1 → · · · → γ|βr+s−1.

If I = −1, then αi1 − 1 ≥ j for all i ≥ 0 and so every (γ, j)|αi
1−1 is upper.

We set
U4

(γ,j)(X) := Ξ∗(γ) (5.2.42)
using the map

Ξ: [r + s]→ [k + 1],

i 7→

{
αi1 − 1, i ≤ r

βi − 1, r + 1 ≤ i ≤ r + s

which is monotone by (5.2.41), and observe that it is of the desired type. One
such case occurs when X = ∂ (with r = −1 and s = k + 1) and reproduces
U4

(γ,j)(∂) = dk+1(γ).

If I ≥ 0, then the construction is naturally partitioned into cases depending
on (γ, j). Since k + 1 is the final vertex, dk+1γ is either low or vertical.

It is low iff j = k+1, in which case I = r+s. This implies that U4
(γ,k+1)(X)

has no terms of type (γ, j)|∗, and that γ|βt−1 = Nβt−1 ⊕ π(γ|βt−1) (as noted in
the proof of Corollary 5.2.30). Similarly, we have (γ, k + 1)|αt

1−1 = π(γ|αt
1−1).

In sum, U4
(γ,k+1)(X) is to be of type

Nα0
N−1−1 ⊕ π(γ|α0

1−1)→ · · · → Nαr
N−1−1 ⊕ π(γ|αr

1−1)→
Nβr+1−1 ⊕ π(γ|βr+1−1)→ · · · → Nβr+s−1 ⊕ π(γ|βr+s−1).

Let us write

δT :=

{
αTN−1 − 1, 0 ≤ T ≤ r

βT − 1, r + 1 ≤ T ≤ r + s.

We claim that
U4

(γ,k+1)(X) := ΓW ⊕ ΓV (5.2.43)
does the job, where, first,

ΓW : ∆r+s → BO(m)

(t0, . . . , tr+s) 7→ N

(∑
δT=0

tT , . . . ,
∑
δT=k

tT

)
where an empty sum is understood to give 0. In other words, tT is a summand
of (and only of) entry δT . We observe that ΓW is well-defined: since the exit
index in this case is j = k+1, N is a k-path. Immediately from the definition
of I, we have δT = αTN−1 − 1 ≤ j − 1 = k for 0 ≤ T ≤ r, and similarly
δT = βT − 1 ≤ j − 1 = k for r + 1 ≤ T ≤ r + s, so that the coordinate
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expression makes sense. Finally, the sum of all entries is equal to
∑r+s

T=0 tT = 1
since, by construction, every tT appears therein exactly once.

Secondly for (5.2.43), we set
ΓV := Ξ∗π(dk+1γ)

using the map Ξ: [r + s] → [k], i 7→

{
αi1 − 1, i ≤ r

βi − 1, r + 1 ≤ i ≤ r + s
as with

(5.2.42) except that the target is different.
The compatibility of (5.2.43) with the inductive assumption (5.2.27) holds

trivially. As for (5.2.28), we may assume, without loss of generality, that
αT1 = i for some arbitrary but fixed i ∈ {1, . . . , j} = {1, . . . , k + 1} for all T ,
and it suffices to consider the restriction of X along ∆{0, . . . , r} ↪→ ∆[r + s],
since for the range from r+ 1 to r+ s we would have to assume βT = i for all
T as well, whence that range is, for our purposes in this case, degenerate. We
may now decompose as

X|0,...,r =
(
α0, k + 2 ≥ · · · ≥ αr, k + 2

)
∪ 0, i

with the left factor in N•
(
P op
i,k+2

)
, so that compatibility comes into question.

Let, then, T ∈ [r] and observe that
ΓW |T (1) = ΓW (0, . . . , 1, . . . , 0) = N|αT

N−1−1(1) = OpN|T (1),

by Remark 5.2.23, where in the second term 1 appears in entry T .8 More
generally, given (t0, . . . , tr) ∈ ∆r, note that αTN−1 ≥ αT

′
N−1 for T ≤ T ′ as we

know from the proof of Lemma 5.2.22, and so
ΓW |0,...,r(t0, . . . , tr) = ΓW (t0, . . . , tr, 0, . . . , 0)

= N|αr
N−1−1,...,α0

N−1−1

 ∑
αT
N−1=α

r
N−1

tT , . . . ,
∑

αT
N−1=α

0
N−1

tT


= OpN|0,...,r(t0, . . . , tr)

directly by the definition of the latter in Construction 5.2.21 and by Re-
mark 5.2.23, since a poset map φ : [K] → [L] is mapped under geometric
realisation (see Chapter 2) to the map

(t0, . . . , tK) 7→

 ∑
φ(T )=0

tT , . . . ,
∑

φ(T )=L

tT

 .

We must also check compatibility with the condition U4(∂) = dk+1(γ),
but this is straightforward. The relevant range is from r+1 to r+ s, and here
we observe that

ΓW |r+1,...,r+s(tr+1, . . . , tr+s) = ΓW (0, . . . , 0, tr+1, . . . , tr+s)

= N|βr+1−1,...,βr+s−1(tr+1, . . . , tr+s)

8This 1 is the one of ∆0 = {1} ⊂ R.
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since β∗ is non-decreasing. This implies
ΓW ⊕ ΓV = Nβr+1−1,...,βr+s−1 ⊕ π(dk+1γ)|βr+1−1,...,βr+s−1

= dk+1γ|βr+1−1,...,βr+s−1

since this face is low in this case by assumption.
If, lastly, dk+1(γ) is vertical, or equivalently j ≤ k which covers the case

0 ≤ I < n+m, then
dk+1(γ, j) = (dk+1γ, j) (5.2.44)

since k + 1 > j implies [j,k+1 = j. We first claim that

U(γ,j)(0, α
T , k + 2) =

{
Udk+1(γ,j)(0, α

T , k + 1), αTrT ≤ k,

Udk+1(γ,j)(0, α
T ), αTrT = k + 1

(5.2.45)

Indeed, recall that by (5.2.16) from the proof of Lemma 5.2.15 we have
U(γ,j)(i, `) = U(γ,j)(i, `

′)

whenever 1 ≤ i ≤ j < `, `′ ≤ k + 2. This immediately implies the claim since
by (5.2.44) the exit indices on both sides coincide. Namely, the latter implies

NαT ,k+2 =

{
NαT ,k+1, αTrT ≤ k

NαT , αTrT = k + 1

since the first index on either side that exceeds j ≤ k is not affected by whether
the full sequence ends with k+1 or k+2. Therefore, if N (which we can thus
employ unambiguously) is 1, then, by Lemma 5.2.29, (5.2.45) becomes

(γ, j)|αT
1 −1 = (dk+1(γ, j))|αT

1 −1 = (dk+1γ, j)|αT
1 −1 (5.2.46)

which holds by simpliciality since αT1 − 1 ≤ k as αT ⊆ [1, k + 1], whence
αT1 − 1 ∈ Im(∂k+1). If N > 1, then again using Lemma 5.2.29 together with
(5.2.46) we see that (5.2.45) is tantamount to

N(γ, j)(αT , k + 2
N−1
− 1) =

{
N(dk+1(γ, j))(α

T , k + 1
N−1
− 1), αTrT ≤ k,

N(dk+1(γ, j))(α
T
N−1 − 1), αTrT = k + 1.

which holds similarly. In the same way we obtain

U(γ,j)(0, βT , k + 2) =

{
Udk+1(γ,j)(0, βT , k + 1), βT ≤ k

Udk+1(γ,j)(0, k + 1), βT = k + 1
(5.2.47)

using Corollary 5.2.30, which is to say, as a special case of the above.
Now, since dV↪→

k+1 = dB
⊕O

k+2 by Lemma 4.3.4, the inductive hypothesis provides
U≤k(dk+1(γ, j)) : Path[k + 1]→ B⊕O

and so in particular a map
U≤k(dk+1(γ, j))|Hom(0,k+1) : N•

(
P op
0,k+1

)
→ BO(n+m). (5.2.48)
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Consider the projection
Π: P op

0,k̂+2
↠ P op

0,k̂+1
,

0, α, k + 2 7→

{
0, α, k + 1, αn ≤ k

0, α, αn = k + 1

with α = (α1 ≤ · · · ≤ αn), n ≥ 0, within [1, k + 1], where n = 0 is understood
to give the empty sequence. It is clearly functorial. Using the adjunction
between geometric realisation and the singular chains functor one more time,
we can write (5.2.48) as a continuous map of type

∣∣N•
(
P op
0,k+1

)∣∣→ BO(n+m),
and, applying Lemma 5.2.37, obtain the restriction∣∣∣N•

(
P op

0,k̂+1

)∣∣∣ ↪→ ∣∣N•
(
P op
0,k+1

)∣∣→ BO(n+m).

Finally, un-applying the adjunction yields the further-restricted ∞-functor

U≤k(dk+1(γ, j)) : N•

(
P op

0,k̂+1

)
→ BO(n+m).

We can thus compose and obtain

Π∗U≤k(dk+1(γ, j)) : 4↠ N•

(
P op

0,k̂+1

)
→ BO(n+m)

and consequently set
U4

(γ,j)(X) := Π∗U≤k(dk+1(γ, j))(X). (5.2.49)

The equalities (5.2.45) and (5.2.47) state precisely that (5.2.49) is compatible
with U≤k.

On the other hand, we may append the compatibility of (5.2.43) and U≤k
to the inductive hypothesis. Namely, we assume that the map induced (by
repeated use of the adjunction between geometric realisation and the singular
chains functor) by U≤k itself on N•

(
P op

0,k̂′+2

)
, for all k′ ≤ k − 1, is given by

(5.2.43) on any exit path whose (k′ + 1)-face is low.
This assumption is justified since it holds in the base case k = 1, as we will

now observe. The case of interest is where the exit index is j = 2, and there
we have given the filler of (5.2.14), which depicts exactly P op

0,3̂
, by Γ ⊕ s0(γV )

and we see that
Γ(t0, t1, t2) = γW (t1, 1− t1) = γW (t1, t0 + t2) = ΓW (t0, t1, t2).

Similarly, on X = (0123 ≥ 013→ 023) we have Ξ: [r+ s] = [0+2]→ [1] maps
0 7→ α0

1 − 1 = 0, 1 7→ β1 − 1 = 0, 2 7→ β2 − 1 = 1, and so Ξ = σ0. Thus
s0(γV ) = Ξ∗π(d2γ) = ΓV .

Consequently, (5.2.49) itself is also compatible with (5.2.43) by virtue of
being compatible with U≤k by the inductive assumption. □

The proof of Proposition 5.2.39 cannot be read off from the examples in
Section 5.2.2 and Example 5.2.33 alone. Let us therefore give two final ex-
amples that illustrate the novel cases treated in that proof.
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Example 5.2.50. Let us consider a case where dk+1γ is vertical. Suppose
k = 2 and j = 2, so that γ (as visualised within the 3-cylinder) is of type

K

K ′

W1 ⊕ V1

W0 ⊕ V0
where we omitted the edge W0 ⊕ V0 → K ′. The face dk+1γ is

W1 ⊕ V1

W0 ⊕ V0 K

.

The image of P op
0,4 under U, with γ painted in blue into 5 within the geometric

realisation, is then of type

W1 ⊕ V0 W1 ⊕ V0

W1 ⊕ V1 W1 ⊕ V1

W0 ⊕ V0 W0 ⊕ V0,

K K ′

.

A path X in N•

(
P op

0,4̂

)
as in (5.2.40) that is novel is given, for instance, by

0124 ≥ 024→ 034, whose image under U4, as can be read off the cube, is to
be of type

W1 ⊕ V0 → W1 ⊕ V1 → K.

The filler thereof provided by the proof is exhibited by first factoring X
through the projection Π, which yields Π(X) = (0123→ 023→ 03), which
by U(d3(γ, 2)) is mapped to a 2-simplex of type

W1 ⊕ V1

W1 ⊕ V0 K
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provided exactly by the left triangle in (5.2.11) in the case j = 2 = [2,3.

Example 5.2.51. In the situation of Example 5.2.33, i.e., with k = 2 and
j = 3 so that dk+1γ is low, a novel path X in N•

(
P op

0,4̂

)
as in (5.2.40) is given,

for instance, by 01234 ≥ 0124 ≥ 024 → 034. Its image under U4 is to be of
type

W2 ⊕ V0 → W1 ⊕ V0 → W1 ⊕ V1 → W2 ⊕ V2. (5.2.52)
We read off

ΓW (t0, t1, t2, t3) = γW (0, t1 + t2, t0 + t3)

where the normal path γW is of type

W1

W0 W2

.

It is a direct check to see that ΓW fills the normal component of (5.2.52).

We will conclude the present chapter with a construction promised in Re-
mark 4.3.14.

Remark 5.2.53. Let Γ: Path[k+1]→ B⊕O be a k-simplex of V ↪→, and 5 as
in Construction 5.2.31. Then the rule9

V ↪→k → (BO∞
q )k

Γ 7→ Γ(5),

restricts on the core V' ⊂ V ↪→ to an inverse to the map Ψ: BO∞
q → V ↪→

from the proof of Theorem 4.3.11. In contrast to the putative rule Ψ−1 in
Remark 4.3.14, this is functorial: 5 = 5k

: ∆k ↪→
∣∣N•

(
P op
0,k+1

)∣∣ is the convex
hull of the corners 0, i, k + 1 and 0, k + 1 within the k-cube (along Propos-
ition 5.2.18), so evidently (dB

⊕O
i+1 Γ)(5k−1

) = diΓ(5
k
) and (sB

⊕O
i+1 Γ)(5k+1

) =

si+1Γ(5
k
) hold for i ∈ {0, . . . , k}, which by Lemma 4.3.4 gives simpliciality.

Remark 5.2.54. None of the results and constructions in this section depends
on the properties of infinite Grassmannians. Conseqently, for any topological
monoid M as in Corollary 4.3.15, assume that its operation � is a cofibra-
tion, and that M =

∐
Mi over some index set. Then we may consider two

‘strata’ M1, M2 and the restricted operation � : M1 × M2 → Mi12 , giving
the linked space (M1 ←M1 ×M2 →Mi12). Then the unpacking map gives a
fully-faithful10 ∞-functor

EX (M1 ←M1 ×M2 →Mi12)→ ∗/Nhc(BM),

9where we use the restriction Γ: HomPath[k+1](0, k + 1) = N•

(
P op
0,k+1

)
→ BO∞

⨿ , take

the corresponding continous map
∣∣∣N•

(
P op
0,k+1

)∣∣∣ → BO∞
⨿ , and finally pull it back along

5 : ∆k ↪→ |N•|
10as noted in the proof of Proposition 6.3.13.
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giving a particularly simple equivalent description of the full sub-∞-categories
of the ‘quasi-deloop-and-loop’ of (M,�) generated by depth-1 pairs.





CHAPTER 6

Cartesian structures

Definition. A linked space S =
(
M

π←− L
ι−→ N

)
is called a linked mani-

fold if
• M , L, and N are smooth manifolds,
• π is a fibre bundle,1 and
• ι is a closed embedding.

6.1. Linked tangent bundles

We start by observing a fact, Lemma 6.1.1, that will let us give the tangent
bundle of a linked manifold by means of unstratified data. This formalises an
informal discussion present in [7, §2.1.4] in the conically-smooth setting.

From now on, we assume all manifolds Hausdorff and paracompact, so that
vector sub-bundles split.

Let ι : L ↪→ N be a clossed embedding of smooth manifolds, and E → N a
rank-(n+m) vector bundle classified by E : N → BO(n+m), equipped with
the inner product induced by that on the separable Hilbert space H ∼= R∞

used to construct the Grassmannians BO(k) = Grk(H). Let further E0 be a
rank-n vector sub-bundle of ι∗E, classified by E0 : L→ BO(n). The pullback
bundle itself is classified by ι∗E : L ↪→ N → BO(n+m).

The normal bundle E⊥
0 ⊂ ι∗E, classified by E⊥

0 : L → BO(m), satisfies
E0 ⊕ E⊥

0
∼= ι∗E. It is classical that the Whitney sum is classified as follows:

Consider the isomorphism
Φ: H ⊕H ∼= H

given by sending, with respect to a fixed basis of H indexed over N, the
first copy to odd coordinates and the second copy to even coordinates. The
(abstract) direct sum precomposes with this isomorphism to give a map

E⊥
0 ⊕̃E0 : L

E0×E⊥
0−−−−→ Grn(H)×Grm(H)

⊕→ Grn+m(H ⊕H)

Φ∼= Grn+m(H) = BO(n+m).

The classifier
⊕W : L→ BO(n+m)

of the Whitney sum E0 ⊕ E⊥
0 is then homotopic to E⊥

0 ⊕̃E0.
1For the construction of the tangent bundle of a linked manifold (Construction 6.1.5), it is
enough that π be a surjective submersion.

95
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Lemma 6.1.1. Let
• ι : L ↪→ N be a closed embedding of smooth manifolds,
• E → N a rank-(n+m) vector bundle equipped with an inner product,
• and E0 ↪→ ι∗E a rank-n vector sub-bundle.

Then there exists a classifier E : N → Grn+m(H⊕H) of the isomorphism class
of E → N such that the diagram

L Grn(H)×Grm(H)

N Grn+m(H ⊕H)

ι

E0×E⊥
0

⊕

E

(6.1.2)

commutes.2

Proof. Let us concatenate the homotopy ⊕W ∼ E⊥
0 ⊕̃E0 constructed

above with the standard one from ι∗E to ⊕W , classifying the inverse of the
bundle isomorphism E0 ⊕ E⊥

0
∼= ι∗E given fibrewise by (v, w) 7→ v + w, to

obtain a homotopy
h : ι∗E → ⊕W → E⊥

0 ⊕̃E0,

of maps L→ BO(n+m), which sits in the commutative diagram

L BO(n+m)I

N BO(n+m)

ι

h

ev0H

E

.

As ι, being a closed embedding, is a cofibration, there exists a homotopy
extension H : N → BO(n+m)I as depicted. We may now consider

E ′ := H1 : N → BO(n+m)

and apply the inverse isomorphism Φ−1 : H ∼= H ⊕H to obtain
Φ−1E ′ : N → Grn(H ⊕H).

On the other hand, applying Φ−1 to E⊥
0 ⊕̃E0 recovers E⊥

0 ⊕E0 = ⊕◦E0×E⊥
0 .

Therefore the two classifiers
E⊥

0 ⊕ E0, ι
∗E ′ : L→ Grn+m(H ⊕H)

coincide. □

Notation 6.1.3. We will sometimes write simply BO(k) for Grk(H
⊕−) ∼=

BO(k) for any countable number of copies of H, and therefore abuse notation
in diagrams of type (6.1.2).

Let now S =
(
M

π←− L
ι−→ N

)
be a linked manifold, with each manifold

riemannian. As above, they are all assumed paracompact, while Hausdorffness
is automatic. Given this contractible choice of metrics, we will show that there

2The point being that it doesn’t just homotopy-commute.
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is a ‘canonical’ map
TS : S→ BO(n,m) (6.1.4)

of linked spaces, which we call the tangent bundle of S.

Construction 6.1.5. Since dπ surjects, the induced linear dual map
(π∗TM)∨ ↪→ (TL)∨,

of bundles over L, injects. Using the metrics, this gives an injection
π∗TM ↪→ TL.

Composing with dι, we have a bundle injection
π∗TM ↪→ TL ↪→ ι∗TN

over L. Let us denote the normal bundle of this injection by
N := NNM := (π∗TM)⊥ ⊂ ι∗TN.

Now, in the diagram

L BO(n)× BO(m)

N BO(n+m)

M BO(n)

π

ι

π∗TM×N

⊕

TN

TM

pr

, (6.1.6)

the back square
L BO(n)× BO(m)

N BO(n+m)

commutes using Lemma 6.1.1 and Notation 6.1.3, and the front square com-
mutes trivially. This yields the span map (6.1.4).

Remark 6.1.7. Writing
NLM := (π∗TM)⊥ ⊂ TL,

we have a splitting
TL ∼= π∗TM ⊕ NLM.

Similarly, writing
NNL := (TL)⊥ ⊂ ι∗TN,

we have a splitting
ι∗TN ∼= TL⊕ NNL ∼= π∗TM ⊕ NLM ⊕ NNL.

Thus
NNM ∼= NLM ⊕ NNL.

In practice, the bundle N is best determined in two steps via this decomposi-
tion.
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Applying EX and post-composing with U, we have the induced map
EX (S)→ V ↪→,

which is the linked version of (the classifying map of) the (conically-smooth)
constructible tangent bundle.
Example 6.1.8. If L is induced by a closed submanifold inclusion M ⊂ N
as L = S(NNM), the sphere bundle of the normal bundle (Example 3.2.16),
then L has dimension n +m − 1, NLM has rank m − 1, and NLN has rank
1. More specifically, in the conically-smooth context, the link (of a pair of
strata) comes with an open embedding L ×R ↪→ N , which is tantamount to
the triviality of the latter normal bundle, i.e., NNL ' ε1, or, equivalently, to
a diffeomorphism L×R ' S (NNM)×R. This R-factor incarnates the extra
E1-structure featuring in the classification of stratified locally-constant (a.k.a.
constructible) factorisation algebras on stratified spaces of type M ⊂ N .
Example 6.1.9. An even simpler situation arises when L (and S) is induced
by a boundary M = ∂N ⊂ N as L ∼= M , the boundary pushed diffeomorphic-
ally into the interior N = N rM by following the flow of a nowhere-vanishing
inward pointing vector field along the boundary (which always exists) for a
chosen non-zero time (Example 3.2.15); we will denote this closed link embed-
ding later by ι+. Then NLM = 0 and NNL ' ε1 again.
Definition 6.1.10. We call a linked manifold with M of dimension n and N
of dimension n+m constructible if L is of dimension n+m−1, and its normal
bundle in N is trivial.

Making the linked tangent bundle (6.1.6) an on-the-nose span map may
be justified by the fact that the only real homotopy involved in (the proof of)
Lemma 6.1.1 is the classical one between ι∗E and E⊥

0 ⊕̃E0 over L, which is
canonical in the sense that it does not depend on E or E0. This choice con-
tains no geometric information, so it would be unwise to change the (n,m)-
Grassmannian by taking a replacement only to remain agnostic about it. Be-
sides, from a more practical point of view, the map U : EX (BO(n,m))→ V ↪→
is natural only for this span BO(n,m).

6.2. Adapting AFR-type structures

The ∞-category of tangential structures is the over-∞-category
Cat∞/V ↪→

as per [7].3 Via
U∗ : Cat∞/V ↪→ → Cat∞/EX (BO(n,m)),

these transfer to tangential structures on linked manifolds: given S, and writ-
ing B(n,m) := U∗B, we may define the space (homotopy type) of B-structures
on S to be

B-red(S) := Map/BO(n,m)

(
EX (S),B(n,m)

)
, (6.2.1)

3See [51, §3] for the ∞-category Cat∞ of ∞-categories.
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the mapping space in Cat∞/EX (BO(n,m)), where the first argument uses TS
(Construction 6.1.5). Equivalently,

B-red(S) = Γ
(
(TS)∗ B(n,m)

)
,

the homotopy-sections of (TS)∗ B(n,m) → EX (S).
Given B and (n,m), a natural question is whether

B(n,m) = EX (B) (6.2.2)
for a linked space B, which would enable us to discuss stratified tangential
structures without having to refer to exit paths. We will restrict ourselves
in this work to the case where B → V ↪→ is induced by a smooth tangential
structure by a cartesian fibration replacement, defined in Section 6.3.

The reason we consider this problem at all is that such tangential structures
are central to our considerations in Chapter 7, where we consider linked spaces
induced by bordisms with defects, equipped mostly with stable replacements
of smooth tangential structures, which are refinements of cartesian structures.
Besides applications, this is the main theoretical reason for our restriction to
cartesian structures: for arbitrary stratified tangential structures, it is not clear
how to define normal bundles, if this is at all possible: see Remark 7.7.1.

With this restriction, we give in Section 6.3 a solution to problem (6.2.2)
for smooth S, i.e., consisting of a single stratum. Then, in Section 6.4, we will
in fact see that the problem as stated is a bit too restrictive for arbitrary S.
We identify instead simply a span B of spaces that does the job just as well:
see Observation 6.4.19.

We will first discuss the simplest example. To begin with, recall that for
κ ∈ N, rank-κ framings (κ-framings) are expressed by the tangential structure
κ : ∗ → V ↪→ that sends the point to κ := Rκ.

Example 6.2.3 (framings). We have

κ(n,m) =

{
EX (∅ ← ∅ → ∗) = ∗, n+m = κ,

∅, else
with(
κ(n,m) → EX (BO(n,m))

)
= EX

(
(∅ ← ∅ → ∗)→ BO(n,m), ∗ κ−→ BO(n+m)

)
.

This reflects the fact that a nontrivially stratified space does not admit a κ-
framing: the else-statement implies that for a linked space to admit a κ-framing
its bulk must be κ-dimensional. The first statement implies moreover that for a
lift of TS to (∅ ← ∅ → ∗) to exist, the space must be of type S = (∅ ← ∅ → N)
(if non-empty), and dimN = κ.

Similar considerations apply to any smooth tangential structure b : B →
V ↪→, i.e., one that factors through BO(κ) ↪→ V' ↪→ V ↪→ for some k.

Example 6.2.4. Let b be a smooth tangential structure given by a map B →
BO(κ) of spaces, e.g., induced by a map G → O(κ) of topological groups, or
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a rank-κ bundle X → BO(κ) on a space X. Then,

B(n,m) =

{
EX (∅ ← ∅ → B) = B, n+m = κ,

∅, else,

where we abbreviated Sing•(B) to B in its last occurence.

Example 6.2.5. Consider N = (N,≤) with the standard order. Variframings
([7]) are given by vfr : N → V ↪→, k 7→ k, (k ≤ K) 7→ (k

−⊕0
↪−−→ K). We read

vfr(k ≤ K) as the standard4 isomorphism k⊕(K− k) ∼= K. Let us restrict vfr
to depth 1 by choosing a pair n ≤ N , i.e., consider vfr|n≤N : {n ≤ N} → V ↪→.
Then, for m = N − n, we have (cf. Corollary 3.3.3)

U∗(vfr|n≤N) ' EX (∗ ← ∗ → ∗) ' ∆[1],

the exit path ∞-category of the nontrivially-linked point. Moreover,
U∗(vfr|n≤N)→ EX (BO(n,m))

is EX of
∗

∗ BO(n)× BO(m) ∗

BO(n) BO(N)

n×m

n pr ⊕ N

.

Thus, a variframing on S = (M ←− L ↪→ N), i.e., a lift of TS to this ∆[1], is
a framing on M , a framing on N , and a framing on NNM . As such, it is more
relaxed than a stable N -framing.

Example 6.2.6 (point defects). The choice of a point p in a smooth manifold
N of dimension n and a coordinate neighbourhood around it induce a linked
space

Np :=
(
{p} ← Sn−1 ιp=ι

↪−−→ N r {p}
)

where the sphere is the unit sphere in coordinates. The link map of TNp reads
ε0 ×

(
TSn−1 ⊕ N(ι)

)
: Sn−1 → ∗× BO(n),

i.e.,
ι∗T (N r {p}) : Sn−1 → BO(n).

A vfr0≤n-structure on Np is a framing on N together with a framing on the
normal bundle of ι. In this example, the latter always exists,5 which is why we
will call such a configuration a trivial point defect.

Two relaxations of the tangential structure κ (or of any smooth structure)
are of particular interest to us. They are termed, in increasing order of gener-
ality, the stable and solid replacements.

4Up to, of course, the choice of a pairing function N×N ∼= N
5The normal bundles of the unit spheres are trivial.
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6.3. Cartesian replacements, I: The smooth case

For J ∈ N, a stably-J-framed smooth manifold M of dimension n is one
with a framing on TM ⊕ εj, J = n + j. In other words, this amounts to an
injection

TM ↪→ εJ

of bundles over M whose normal bundle, defined either using a metric on εJ

or as the quotient εJ/TM , is parallelised.
More generally, a solid J-framing on M is merely an injection TM ↪→ εJ .

First of all, we notice that in order to impose the parallelisability of the normal
bundle in terms of reductions or extensions of structure groups, we must first
separate it from the solid datum.

Let X be a smooth manifold equipped with a vector bundle E → X of
rank r, and let F → X be another bundle, of rank R. Choosing a bundle
embedding

E ↪→ F

is a reduction or extension of gauge group on E in the following way. There
is naturally a normal bundle N to E such that the embedding amounts to an
isomorphism

Φ: E ⊕N ∼= F.

This Φ provides a filler for the diagram

BO(r)× BO(R− r)

X BO(R).

⊕E×N

F

Changing our point of view slightly, consider the limit space6

X ×BO(R) (BO(r)× BO(R− r)) BO(r)× BO(R− r)

X BO(R)

⌜ ⊕

F

(6.3.1)

which also admits a ‘source evaluation’ by projecting to the first factor:
ev0 : (BO(r)× BO(R− r))|F → BO(r).

Now, writing
(BO(r)× BO(R− r))|F := X ×BO(R) (BO(r)× BO(R− r)), (6.3.2)

the choice of Φ can be expressed as follows:

6For the moment, we disregard the appropriate homotopy versions of such limits in order to
ease notation; in terms of the tangential structure, this amounts to disregarding the choice
of bundle isomorphism. Homotopy limits will be reincorporated into this account of their
own accord below.
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Definition 6.3.3. A solid F -structure or -reduction on E (or on X when
E = TX) of is a lift of the form

(BO(r)× BO(R− r))|F

X BO(r)

ev0

E

.

We call R the total rank of the solid structure.

The normal bundle itself can be recovered from such a lift by projecting it
to the second factor:

N : X → (BO(r)× BO(R− r))|F → BO(R− r).
Thus, a further, simultaneous reduction on N can be implemented using this
projection: if N is to have (B → BO(R− r))-structure, then we may consider
the iterated fibre product

(BO(r)× BO(R− r))|F ×BO(R−r) B (BO(r)× BO(R− r))|F

B BO(R− r)

⌜

(6.3.4)
and, writing
(BO(r)× BO(R− r))|(F,B) := (BO(r)× BO(R− r))|F ×BO(R−r) B, (6.3.5)

ask for reductions of the following form:

Definition 6.3.6. A solid (F,B)-structure on E (or on X when E = TX) is
a lift of the form

(BO(r)× BO(R− r))|(F,B)

X BO(r)

ev0

E

.

When B = R− r, this is a stable F -structure. We call B → BO(R − r), or
B, the normal structure. When F is clear or unimportant, we also simply say
solid/stable Y -structure.

It is incidental that F is given as a bundle over X. More generally, when
F : Y → BO(R)

is any smooth tangential structure with rank R ≥ r = rk(E), the limit (6.3.1),
and so also (6.3.4), still make sense. Then, a solid Y - or (Y,B)-structure is
defined analogously, as is a stable Y -structure.

Warning 6.3.7. The definition of a stable structure given in Definition 6.3.6 is
similar to but also completely different from another very common definition in
the literature, according to which, for instance, M is stably-framed if M ×Rd



6.3. CARTESIAN REPLACEMENTS, I: THE SMOOTH CASE 103

for some d ≥ 0 is framed. For us, the total rank is fixed, so there is a single
candidate for the trivial factor. We will never use this variant in this work.

Solid replacements in the stratified context have been considered in [7].
In categorical terms, they are cartesian fibration replacements. Namely, the
assignment in the following Definition 6.3.8 extends (by a main result of [35])
to a left-adjoint

Cat∞/V ↪→ → Catcart∞ /V ↪→

to the forgetful functor Catcart∞ /V ↪→ → Cat∞/V ↪→ from cartesian tangential
structures (i.e., cartesian fibrations over V ↪→) to tangential structures.

Definition 6.3.8. Given a tangential structure b : B → V ↪→, its cartesian
(fibration) replacement is

b : B = (B, b) = (V ↪→)∆[1] ×(V↪→){1} B → (V ↪→){0},

the source evaluation from the fibre product along the target evaluation.

Note the direct correspondence with Definition 6.3.3 (and (6.3.1)), in view
of BO(r)×BO(R−r)’s being the link of the (r, R−r)-Grassmannian, viewing
the target evaluation as the embedding ⊕ off of the link. We will make this
precise.

A solid (F : Y → BO(R))-structure on a rank-r bundle ought to be (a lift
to) the restriction to BO(r) of the solid replacement of F :

Y |r := BO(r)×(V↪→){0} Y Y

BO(r) V ↪→

⌜
F . (6.3.9)

This is the space of morphisms in V ↪→ that start in BO(r) and end in the
image of F inside BO(R).

Lemma 6.3.10. HomV↪→(p, q) ' HomEX (BO(r,R−r))(p, q), where p ∈ BO(r)
and q ∈ BO(R).

Proof. For the most part, we repeat the argument in Remark 4.3.2 – see
there for the references. HomV↪→(p, q) is equivalent to the homotopy-fibre of

p∗ : HomNhc(B⊕O)(∗, ∗)→ HomNhc(B⊕O)(∗, ∗),
at q. Morphism spaces in a homotopy-coherent nerve are equivalent to those
in the original topological category, so it is equivalent to the homotopy-fibre
of

(−⊕ p) : BO∞
q → BO∞

q
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at q. The connected component of q in BO∞
q is BO(R), and p∗ maps only

BO(R− r) into it, so we have
HomV↪→(p, q) = (BO(R− r)⊕ p)×BO(R){0} BO(R)∆[1] ×BO(R){1} {q}

= π−1(p)×BO(R){0} BO(R)∆[1] ×BO(R){1} {q}
= P (BO(R))π−1(p),q

' HomEX (BO(r,R−r))(p, q)

by Theorem 3.3.1. By π = pr1 we denoted the link projection in BO(r, R −
r). □

Remark 6.3.11. We should note that Y |r is not, in general, the∞-categorical
homotopy fibre product

BO(r)×h
V↪→ Y = BO(r)×(V↪→){0} Isom(V ↪→)×(V↪→){1} Y

in the sense of [52, §01DE]: isomorphisms in V ↪→ from BO(r) to F (Y ) exist iff
r = R. A Kan fibration replacement rather than a cartesian one would employ
BO(r)×h

V↪→ Y .

The following is a consequence of Lemma 6.3.10 and the fully-faithfulness
of U: see the proof of Proposition 6.3.13.

Corollary 6.3.12. EX (BO(n,m)) is equivalent to the full sub-∞-category
V ↪→|n,m of V ↪→ generated by BO(n), BO(n+m) ⊂ V'.

Thus, the result of Joyal–Lurie/Hebestreit–Krause combined with The-
orem 3.3.1 hints at an alternative means of providing U : EXBO(n,m) ↪→ V ↪→
in its topological incarnation. However, this is hard to make explicit, (not too)
unlike our construction of U as a map of simplicial sets.

Proposition 6.3.13. Y |r ' (BO(r)× BO(R− r))×h
BO(R) Y .

Proof. Written in full, the statement reads

BO(r)×(V↪→){0} (V ↪→)∆[1] ×(V↪→){1} Y
'

(BO(r)× BO(R− r))×BO(R){0} BO(R)∆[1] ×BO(R){1} Y.

By direct on inspection of U on exit paths of maximal index, which in the
proof of Proposition 5.2.39 is the case where dk+1γ is low (the inverse is given
by sending a (k + 1)-path in B⊕O to the image k-simplex of 5 under it.7),
and by Lemma 6.3.10 we have that U : EX = EX (BO(r, R − r)) → V ↪→ is
fully-faithful, whence it is an equivalence onto its image V ↪→(r, R), the full
sub-∞-category generated by BO(r) q BO(R) ⊂ V ↪→. Thus, we observe that

7Recall the construction from Lemma 5.2.37 and Proposition 5.2.39.
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in the diagram

F ×BO(R) Y F EX∆[1] V ↪→(r, R)∆[1]

BO(r)× BO(R) EX×2 V ↪→(r, R)×2

Y BO(R)

⌜
∼

ev0×ev1
⌜

ev0×ev1

∼

F

,

F coincides with BO(r)×(V↪→){0} (V ↪→)∆[1]×(V↪→){1}BO(R), and, by the pasting
lemma and again by Theorem 3.3.1, also with
EX∆[1] ×EX×2 (BO(r)× BO(R)) = BO(r)×EX {0} EX∆[1] ×EX {1} BO(R)

' (BO(r)× BO(R− r))×BO(R){0} BO(R)∆[1].

Thus, both sides in the statement are equivalent to F ×BO(R) Y . □

In terms of lifts, Proposition 6.3.13 reads:

Corollary 6.3.14. A solid F -structure, in the sense of Definition 6.3.3, on a
smooth manifold X of dimension r, is a cartesian F -structure, in the sense of
Definition 6.3.8, on the (trivially-linked) manifold X.

6.4. Cartesian replacements, II: The linked case

We now generalise the discussion from cartesian structures on smooth
spaces to those on linked spaces. Throughout this section, let F : Y → BO(R) ⊂
V ↪→ be a smooth tangential structure, and S =

(
M

π↞ L
ι
↪→ N

)
be a linked

manifold with dimM = n, dimN = n + m. For simplicity, let us assume
R = n +m, leaving the obvious modifications for the case R > n +m to the
reader (cf. Remark 6.7.14). We will sometimes abuse notation by not distin-
guishing BO(n,m) from EX (BO(n,m)), or S from EX (S), etc., and also keep
to Notation 6.1.3 throughout.

Since U : BO(n,m) ↪→ V ↪→ is fully faithful, the (iterated) fibre product
Y (n,m) := BO(n,m)×V↪→ Y = (U ↓ F )

as in Section 6.2 is simply a restriction, and so, in light of the results of
Section 6.3, we are in a position to understand the meaning of a cartesian
Y -structure in the linked setting.

Definition 6.4.1. A cartesian Y -structure on S is a lift8 of type

Y (n,m)

S BO(n,m)

t

TS

.

8We consider honest lifts rather than homotopy lifts in view of Proposition 6.3.13.
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The main goal of this section is to identify a span B of spaces overBO(n,m)
such that span maps S→ B that lift TS induce cartesian Y -structures on S.
This is achieved in Theorem 6.4.20 combined with Observation 6.4.19.

6.4.1. Low dimensions. At a point p ∈ M , let us write Tp := TS(p) ∈
BO(n). A point-wise lift

tp ∈ BO(n,m)×(V↪→){0} (V ↪→)∆[1] ×(V↪→){1} Y

is determined by a path of type

Wp ⊕ Tp
tp→ FM

p

in BO(n+m) where
FM
p ∈ F (Y ) ⊂ BO(n+m),

Wp ∈ BO(m).

Since
TS|M : M ↪→ S→ BO(n,m)

factors through

M
TM→ BO(n) ↪→ BO(n,m)∼ ↪→ BO(n,m)

(note BO(n,m)∼ ' BO(n)qBO(n+m) exactly like V' ' BO∞
q ), t|M : M →

Y (n,m) factors through BO(n)×BO(n,m)BO(n,m)×V↪→ Y = Y |n (recall (6.3.9)),
we identify W−, via Proposition 6.3.13, as the ‘normal bundle’

W : M (BO(n)× BO(m))×h
BO(n+m) Y BO(m)

t|M pr2◦ev0 .

of the induced solid F -structure t|M on M . Of course, TM can be similarly
identified to be pr1 ◦ ev0 ◦ t|M and FM

− to be ev1 ◦ t|M . Similarly, a lift tq at
q ∈ N is a path of type Tq

tq→ FN
q . That is, t|N factors, again as a special case

of Proposition 6.3.13, through BO(n+m)∆[1]×BO(n+m){1} Y which projects to
BO(n+m) via ev0 so that TN = ev0 ◦ t|N .

Let us consider now a non-invertible exit 1-path γ = (γ̂, 1) in EX (S) and
explicate the application of TS thereon: γ is determined by a path γ̂ : p̂→ q
in N , and so TS(γ) will be determined by a path in BO(n+m)1 with source
⊕ ((π∗TM × NNM) (p̂)) = Np̂ ⊕ TpM, where N = NNM , and actual path

Tp̂N
TN(γ̂)−→ TqN

which is consistent since EX (S)→ EX (BO(n,m))’s being induced by a span
map S→ BO(n,m) implies

Np̂ ⊕ TpM = Tp̂N. (6.4.2)
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Let us place all players involved in a diagram:

N1 BO(n+m)1

(
p̂

γ̂→ q
) (

Np̂ ⊕ TpM
Tγ̂N−→ TqN

)

(
p→

γ
q

) (
TpM −→

TLS(γ)
TqN

)

EX (S)1 BO(n,m)1

∈ ∈

dι

TγS

∈ ∈

(6.4.3)

Now, a lift tγ (or rather its underlying 2-path) necessarily factors as tγ : ∆[1]×
∆[1]→ BO(n+m) ↪→ V ↪→ and, resuming the notation from the beginning of
Section 5.2, we have

(
p

γ→ q
)

t7→


FM
p FN

q

TpM TqN

ρ

(H,ζ)(Wp,tp)

(Np̂,Tγ̂N)

(0,tq)

 (6.4.4)

in view of (6.4.3). That tγ ∈
(
Y (n,m)

)
1

means that the lower horizontal path
is to be in V ↪→|n,m (recall Corollary 6.3.12) and the upper horizontal path in
F (Y ). This implies that there is an induced concatenated path

Wp → Np̂. (6.4.5)
Indeed, the square is shorthand two 3-simplices in B⊕O of the form

2

1 3

0

0Wp

TpM FpM FqN

H and

2

1 3

0

0Np̂

TpM TqN FqN

H , (6.4.6)

which correspond to the upper and lower triangle respectively, such that the
013-faces dB⊕O

2 (tγ), filled by ζ, coincide, for that is the diagonal/common hy-
potenuse. The path (6.4.5) is induced by the two top triangles filled by paths
Wp → H, Np̂ → H.
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6.4.2. Sufficient material to construct t. Let ` ∈ L and see it, via the
constant-loop inclusion

L ↪→ P (L)
ι∗
↪−→ P (N), (6.4.7)

as an exit path
π(`)→ ι(`) in S.

Taking p = π(`) and q = ι(`), we have that the path Tγ̂N = T`N is the
constant path N` ⊕ TpM

id−→ TqN . In particular, along L ↪→ P (N) we may
take H = Np̂ and so (6.4.5) is given without concatenation by the first 3-
simplex in (6.4.6). In fact, let us for simplicity take

H = Wp = Np̂ (6.4.8)
and use the constant paths.

So it suffices to provide a filler for

tγ =


FM
p FN

ι(`)

N` ⊕ TpM

ρ

tp tq


in order to construct (6.4.4) along L ↪→ P (L).

Remark 6.4.9. The constant-loop inclusion defines a map
L→ (M ↓ N) =M ×EX {0} EX∆[1] ×EX {1} N

at vertex level by
` 7→ (π(`), const`, ι(`)) .

This map is in fact an equivalence (Proposition 6.6.7), realising the equivalence
of Theorem 3.4.1 (cf. Observation 6.7.1).

Varying ` and rewriting, we see that this provides a point-wise filler for the
triangle

π∗FM ι∗FN

N⊕ π∗TM

L

ρ

π∗(t|M ) ι∗(t|N )

(6.4.10)

of bundle isomorphisms over L. Our simplification amounts then, along L ↪→
P (L), to saying π∗W = NNM and so

N⊕ π∗TM = π∗(W ⊕ TM).

The bundles FM/N are FM/N : M/N
t|M/N→ Y (n,m)

ev1→ Y
F→ BO(n+m).

The two legs of (6.4.10) give two Y -structures on the bundle N⊕π∗TM →
L, and ρ together with the filler 2-simplex, for which we will collectively write
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ρ, is a path between them:(
π∗(t|M)

ρ−→ ι∗(t|N)
)

in Y -red (N⊕ π∗TM) (6.4.11)

where the space
Y -red(E → X) = Map/BO(n+m)(E, Y )

is that of the lifts of E : L → BO(n + m) to F : Y → BO(n + m), for E a
rank-(n+m) bundle on X.

We may now relax the assumption (6.4.8) back in the following way.

Lemma 6.4.12. Suppose
ρ : L→ BO(n+m)I×I

is a map that satisfies the following conditions:

(1)
(
L→ BO(n+m)I×I

ev20−−→ BO(n+m)I×{0}
)

= π∗tM ,

(2)
(
L→ BO(n+m)I×I

ev21−−→ BO(n+m)I×{1}
)

= ι∗tN ,

(3) L→ BO(n+m)I×I
ev11−−→ BO(n+m){1}×I hits Im(F ), which is to say

it lifts along Y I F∗−→ BO(n+m)I .
Then it yields a map

ρ : L→ (π∗tM ↓ ι∗tN) .

We will prove the preceding lemma after noting some of its consequences.
Sometimes we also write ρ in the form

L→ HomY (n,m)
(π∗tM(−), ι∗tN(−))

for its suggestiveness, rather than the arrow notation for comma categories.9
Diagrammatically, we have

ι∗TN ι∗(FN)

π∗(W ⊕ TM) π∗(FM)

ι∗tN

π∗tM

within Im(F ) . (6.4.13)

When evaluated at a point ` ∈ L, this gives a diagram in V ↪→ via
BO(n+m)I×I ↪→ (V ↪→)∆[1]×∆[1].

If (6.4.8) holds, we may take the left vertical path to be constant at π∗(W⊕
TM) = N⊕π∗TM = ι∗TN , or otherwise we can induce it directly by the path
η classifying the isomorphism π∗W ∼= N as η ⊕ idBO(n). If the former, then ρ
is of type

ρ : L→ BO(n+m)∆
2

,

9This will be natural for readers familiar with dependent pair types, a.k.a. Σ-types (see e.g.
[77, §1.6] for an exposition).



110 6. CARTESIAN STRUCTURES

as was implicit in (6.4.11). Indeed, this incarnation is also relevant for our
purposes, so let us state the corresponding version of the Lemma.

The following definition is extracted from (6.4.10).

Notation 6.4.14. We denote the (ordinary) limit of the diagram

BO(n+m)∆
2

BO(n+m){0} BO(n+m)∆
{1<2}

BO(n)× BO(m) Y I

⊕ F∗

of spaces by BO(n+m)∆
2 |⊕Y .

Lemma 6.4.15. Suppose
ρ : L→ BO(n+m)∆

2 |⊕Y
is a map such that its composition with

BO(n+m)∆
2 → BO(n+m)∆

{0<1}

is π∗tM , and its composition with

BO(n+m)∆
2 → BO(n+m)∆

{0<2}

is ι∗tN . Then it yields a map
ρ : L→ HomY (n,m)

(π∗tM(−), ι∗tN(−)) .

Proof. Push Lemma 6.4.12 along I × I ' ∆2. □
Remark 6.4.16. The simplicity of the statement of Lemma 6.4.15 is due to
our running assumption that R = n + m, i.e., that the rank of the smooth
structure coincides with the dimension of N . We leave the modification of the
definition of BO(n+m)∆

2 |⊕Y (and of the proof) for the general case R ≥ n+m
to the reader.

In any case, the left vertical path in (6.4.13) need not be provided separately
when attempting to construct a cartesian structure t. If Y = ∗ (framings of
rank n + m), the right vertical path can be collapsed as well, and we would
have a globular 2-morphism, but this is a very special case.

Definition 6.4.17. We call a ρ as in Lemma 6.4.12 or Lemma 6.4.15 a com-
patibility between the structures tM , tN . If it exists, we call the structures on
M and N compatible over L.

Proof of Lemma 6.4.12. Such a map yields

ρ : L→ (L, π∗tM)×
Y

{0}
(n,m)

Y
∆[1]

(n,m) ×Y {1}
(n,m)

(L, ι∗tN) = (π∗tM ↓ ι∗tN)

↪→ (L, π∗tM)×(V↪→)∆[1]×{0} (V ↪→)∆[1]×∆[1] ×(V↪→)∆[1]×{1} (L, ι∗tN)
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along the inclusion Y (n,m) ↪→ (V ↪→)∆[1]. Indeed, that

ρ : L→ BO(n+m)I×I ↪→ (V ↪→)∆[1]×∆[1]

descends to
ρ : L→ Y

∆[1]

(n,m)
∼= BO(n,m)∆[1] ×(V↪→){0}×∆[1] (V ↪→)∆[1]×∆[1] ×(V↪→){1}×∆[1] Y I

is clear: that
ρ : L→ (V ↪→)∆[1]×∆[1] → (V ↪→){0}×∆[1]

factors through BO(n,m)∆[1] is trivial since it already factors through BO(n+

m)I ↪→ (BO(n,m)∼)∆[1] ' BO(n)I qBO(n+m)I , and that
ρ : L→ (V ↪→)∆[1]×∆[1] → (V ↪→){1}×∆[1]

factors through Y I is imposed by Condition 3.
Further, that ρ : L → Y

∆[1]

(n,m) evaluates to π∗tM resp. ι∗tN under ev0 resp.
ev1 is imposed by Condition 1 resp. 2, so that the two legs L→ L in the map
to the iterated fibre product can be given by the identity. □

At a point ` ∈ L with π(`) = p and ι(`) = q, we have

ρ` ∈ {π∗tM(`)} ×
Y

{0}
(n,m)

Y
∆[1]

(n,m) ×Y {1}
(n,m)

{ι∗tN(`)}

= {tM(p)} ×
Y

{0}
(n,m)

Y
∆[1]

(n,m) ×Y {1}
(n,m)

{tN(q)}

= HomY (n,m)
(tM(p), tN(q)).

Definition 6.4.18. A solid Y -structure on S consists of

• a Y -structure on N determined by a bundle isomorphism, TN
tN∼= FN

• a solid Y -structure on M determined by a bundle isomorphism W ⊕
TM

tM∼= FM such that π∗W ∼= NNM ,
• and a compatibility ρ : L→ HomY (n,m)

(π∗tM(−), ι∗tN(−)) .

Observation 6.4.19. A solid Y -structure on S is a lift of TS to the following
span over BO(n,m):

BO(n+m)∆
2 |⊕Y

BO(n+m)∆
{0<1} |⊕Y BO(n+m)∆

{0<2} |⊕Y

L BO(n)× BO(m)

N BO(n+m)

M BO(n)

π

ι

TLS

⊕

TN

TM

pr1
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Proof. Note that
BO(n+m){0<1}|⊕Y ' Y |n

by Proposition 6.3.13, so a lift of TM to it is precisely a solid Y -structure on
M . Similarly,

BO(n+m)∆
{0<2} |⊕Y ' BO(n+m)I ×BO(n+m){1} Y ' Y |n+m,

so a lift of TN is a Y -structure on N . The statement now follows from
Lemma 6.4.15. □

The following is the main result of the present chapter.
Theorem 6.4.20. The linked manifold S possesses a solid Y -structure if and
only if it possesses a cartesian Y -structure.

The proof of the two directions are split into Sections 6.6 and 6.7. However,
we will first discuss the ‘reason’ why one of the directions is true, and in doing
so highlight the technical difficulties in obtaining a full proof of the statement,
which consists in various contractible choices that need to be made consistently.
The goal of the box construction of Section 6.6 is to organise them, in essence,
to a single contractible choice.

6.5. The only-if statement in Theorem 6.4.20 to second order

The content of the proof of the only-if statement in terms of the corres-
ponding topological categories is as follows. Of course, tM q tN defines the
restriction of t to S∼ =M qN . Let now p ∈M , q ∈ N . We can provide t on
morphisms from p to q, i.e., a map

PLp,q → Hom(V↪→)∆[1](tp, tq) = Hom(V↪→)∆[1](tM(p), tN(q)).

The compatibility
ρ : L→ HomY (n,m)

(π∗tM(−), ι∗tN(−)) , (6.5.1)

gives by restriction a map

ρ|p : PLp,q
ev0−−→ Lp

ρ|−→ Hom(V↪→)∆[1](tM(p), tN(ev0(−))), (6.5.2)
where ev0(−) in the second argument takes γ̂ ∈ PLp,q to its initial point.10

Similarly, the restriction of tN by restriction gives a map
tN | : PLp,q → Hom(V↪→)∆[1](tN(ev0(−)), tN(q)). (6.5.3)

We may now ‘compose’ to obtain the desired map

PLp,q
ρ|×tN |−−−−→ Hom(V↪→)∆[1](tM(p), tN(ev0(−)))× Hom(V↪→)∆[1](tN(ev0(−)), tN(q))
◦→ Hom(V↪→)∆[1](tM(p), tN(q)).

This gives the statement to first order.
Notation 6.5.4. From now on, for the sake of readability, we will sometimes
write [−,−](−) := Hom(−)(−,−).
10As usual, we do not distinguish L from ι(L) in notation.
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For the second order, we will check the functoriality of this map to first
order directly:

[p, p′]EX × [p′, q]EX [p, q]EX

P (M)p,p′ × P (N)Lp′ ,q
P (N)Lp,q

[tM(p), tM(p′)](V↪→)∆[1] × [tM(p′), tN(q)](V↪→)∆[1] [tM(p), tN(q)](V↪→)∆[1]

∼ ∼

(6.5.5)
homotopy-commutes, as does

[p, q]× [q, q′] [p, q′]

P (N)Lp,q × P (N)q,q′ P (N)Lp,q′

[tM(p), tN(q)]× [tN(q), tN(q
′)] [tM(p), tN(q

′)]

∼ ∼

(6.5.6)

where p ∈M and q, q′ ∈ N .
Let us consider (6.5.5) first. Unpacking the construction, the lower square

is

P (M)p,p′ × P (N)Lp′ ,q

tM×(ρ|p′×tN |)
−−−−−−−−→
[tM(p), tM(p′)]× ([tM(p′), tN(ev0(−))]× [tN(ev0(−)), tN(q)])
id×◦−−→ [tM(p), tM(p′)]× [tM(p′), tN(q)]
◦−→ [tM(p), tN(q)]

counter-clockwise, and
P (M)p,p′ × P (N)Lp′ ,q

→ P (N)Lp,q

ρ|p×tN |−−−−→ [tM(p), tN(ev0(−))]× [tN(ev0(−)), tN(q)]
◦−→ [tM(p), tN(q)]

clockwise. Let now δ ∈ P (M)p,p′ , γ̃ ∈ P (N)Lp′ ,q
, and let ε̃ ∈ P (N)Lp,q a choice

of composition, with composition 2-path Γ = (Γ̃, 2) ∈ P∆
1 ⊂ EX 2 necessarily

of maximal exit index. This is to say that
d2Γ = π(d2Γ̃) = δ,

d0Γ = (d0Γ̃, [2,0) = (d0Γ̂, 1) = (ε̃, 1),

d1Γ = (d0Γ̃, [2,1) = (γ̃, 1)
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where δ̃ := d2Γ̃ is a path in L covering δ. Say ` ∈ Lp is the source of δ̂ and
`′ ∈ Lp′ its target, so that the two compositions in the diagram evaluate to

(δ, γ̃) 7→
(
tM(p)

tM (δ)−−−→ tM(p′), tM(p′)
ρ(`′)−−→ tN(`

′), tN(`
′)

tN (γ̃)−−−→ tN(q)

)
7→
(
tM(p)

tM (δ)−−−→ tM(p′), tM(p′)
ρ(`′)∗tN (γ̃)−−−−−−→ tN(q)

)
7→
(
tM(p)

tM (δ)∗ρ(`′)∗tN (γ̃)−−−−−−−−−−→ tN(q)

)
counter-clockwise, and to

(δ, γ̃) 7→ ε̃ 7→
(
tM(p)

ρ(`)−−→ tN(`), tN(`)
tN (ε̃)−−−→ tN(q)

)
7→
(
tM(p)

ρ(`)∗tN (ε̃)−−−−−−→ tN(q)
)

clockwise, but Γ provides two fillers, namely ρ applied to δ̃ which underlies its
low edge, and tN applied to Γ̃ itself, that fill

tM(p) tM(p′)

tN(`) tN(`
′)

tN(q)

ρ(`)

tM (δ)

ρ(δ̃) ρ(`′)

tN (δ̃)

tN (ε̃) tN (γ̃)
tN(Γ̃)

(6.5.7)

as depicted. This provides exactly the desired homotopy tM(δ)∗ρ(`′)∗tN(γ̃) ∼
ρ(`) ∗ tN(ε̃).

As for (6.5.6), let δ̃ ∈ P (N)Lp,q, γ ∈ P (N)q,q′ and let ε̃ ∈ P (N)Lp,q′ be a
choice of composition with filler Γ = (Γ̃, q) ∈ EX 1 necessarily of minimal exit
index satisfying the index-1 analogue of the above simplicial relations.

Say now ` ∈ Lp is the source of δ̃ and of ε̃. The compositions in the lower
square evaluate to

(δ̃, γ) ε̃

(
tM(p)

ρ(`)∗tN (δ̃)∗tN (γ)−−−−−−−−−→ tN(q
′)

) (
tM(p)

ρ(`)∗tN (ε̃)−−−−−−→ tN(q
′)
)
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but now it suffices to observe that the filler

tN(Γ̃) =


tN(q) tN(q

′)

tN(`)

tN (γ)

tN (ε̃)
tN (δ̃)


induces the desired homotopy ρ(`) ∗ tN(δ̃) ∗ tN(γ) ∼ ρ(`) ∗ tN(ε̃).

The problem with this method is that, while the map
PLp,q → [tM(p), tN(q)]

on the morphism spaces is easy to specify, and its ‘functoriality’ to first order
in the sense above is straightforward albeit notationally tedious, it is not clear
how to translate these data to an actual∞-functor t : EX → Y (n,m). The tech-
nical issue is that even though the so-called Dwyer–Kan models Hom(R/L)

C (p, q)
of morphism spaces in an ∞-category due to Joyal/Lurie are well-known to
be weakly equivalent to the simplicial morphism spaces CC(p, q) in the rigid-
ification CC ([51, 28, 27]), it is not clear how exactly to provide an honest
simplicial functor CEX → CY (n,m) given all the choices (even if contractible)
above. It also seems that the description of CC(p, q) in terms of necklaces due
to Dugger–Spivak does not simplify matters in this particular case.

In any case, this approach would be technically somewhat unnatural. After
rigidification, one obtains simplicial morphism spaces that are in general not
even quasi let alone Kan, but rather have different combinatorial behaviour.
For instance, Riehl showed in [65] that while all of their inner 2-horns admit
fillers, some contain 3-horns without fillers, and all are 3-coskeletal, which is
to say that spheres ∆/∂∆ of dimension at least 3 admit fillers.

Nevertheless, Lurie proved in [51], as did Dugger and Spivak in [27] using
different methods, that the simplicial morphism spaces and the Kan morphism
spaces are weakly equivalent, that is, weakly equivalent in the usual sense after
taking geometric realisations. This applies in particular to Lurie’s pinched
morphism spaces, one variant of which was used in the proof of Theorem 3.3.1
– these are collectively termed the ‘Dwyer–Kan models’ in ibid.

In concrete terms, the contractible spaces of choices mentioned above do
not have obviously specifiable elements that do the job, unlike our discussion
in Section 5.2 in the context of the construction of the unpacking map.

6.6. The box construction

In order to make the idea of Section 6.5 a reality, we will introduce and
work with variants of EX , V ↪→ and Y (n,m). As usual, we will sometimes not
distinguish between L and ι(L).
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Consider an exit 2-path (Γ, 2) ∈ P∆
1 ⊂ EX 2 of index 2:

q

p p′

where, by construction, p, p′ ∈M , q ∈ N , and the notation for the edge p→ p′

includes a lift11

bΓ2 := (p̂→ p̂′) ∈ L1

up to L whose image under ι sits in the underlying 2-simplex Γ ∈ N2, which is
q

ι(p̂) ι(p̂′).
ι(bΓ2)

This path p̂→ p̂′ itself gives a square
bΓ2 : ∆[1]×∆[1]→ EX (6.6.1)

of the form
ι(p̂) ι(p̂′)

p p′

p̂ p̂′

where we did not distinguish in notation between the points p̂, p̂′ ∈ L and
their images under the constant loop inclusion L ↪→ P (L) ↪→ P (N). The
common diagonal p → ι(p̂′) is canonically provided by the upper horizontal
path ι(p̂→ p̂′) itself, seen as an exit 1-path (ι(p̂→ p̂′), 1) with source π(p̂) = p.
In this way, the left triangle

ι(p̂) ι(p̂′)

p

ι(bΓ2)

p̂
(ι(bΓ2),1)

(6.6.2)

in the square is filled by (s0ι(bΓ2), 1).
To see this, note first that the exit index being 1 implies that the 1- and

2-faces are vertical, while the 0-face is upper, as desired. Since disj = id for
i ∈ {j, j + 1}, we have

d1(s0ι(bΓ2), 1) = (d1s0ι(bΓ2), [1,1) = (ι(bΓ2), 1)

and
d0(s0ι(bΓ2), 1) = d0s0ι(bΓ2) = ι(bΓ2),

also as desired. Finally, because disj = sjdi−1 for i > j + 1, we have
d2(s0ι(bΓ2), 1) = (d2s0ι(bΓ2), [1,2) = (s0d1ι(bΓ2), 1) = (s0(ι(p̂)), 1),

11The prefix ‘b’ stands for ‘base’.
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which is precisely the constant loop at ι(p̂) seen as an exit path (necessarily of
index 1), for which we’ve been writing simply p̂.

Analogously, the right triangle

ι(p̂′)

p p′

(ι(bΓ2),1)

πbΓ2

p′ (6.6.3)

in the square is filled by (s1ι(bΓ2), 2). Indeed, the index implies that the 0-
and 1-faces are vertical while the 2-face is low, as desired. Since disj = sj−1di
for i < j, we have

d0(s1ι(bΓ2), 2) = (d0s1ι(bΓ2), [2,0) = (s0d0ι(bΓ2), 1) = (s0ι(p̂′), 1)

which is, as discussed above, exactly what we denoted by p̂′. Next,
d1(s1ι(bΓ2), 2) = (ι(bΓ2), [2,1) = (ι(bΓ2), 1),

and finally
d2(s1ι(bΓ2)) = πbΓ2.

This finishes the check. We can now glue, in EX , the square bΓ2 with the
underlying Γ ∈ N2 along ι(bΓ2):

q

ι(p̂) ι(p̂′).

p p′

ι(bΓ2)

(ι(bΓ2),1)p̂

πbΓ2

p̂′

(6.6.4)

Let us now consider an exit 2-path (Γ, 1) ∈ P∆
1 ⊂ EX 2 of index 1:

q q′

p

with p ∈ M , q, q′ ∈ N where a lift p̂ ∈ L of p is implicit. Indeed, the base is
bΓ1 = p̂ ∈ L0. It gives a ‘square’

bΓ1 : ∆[1]×∆{0} → EX (6.6.5)
which is simply

ι(p̂)

p.

p̂ =s0ι(p̂)
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Gluing with the underlying Γ ∈ N2 gives now

q q′

ι(p̂)

p.

p̂ =s0ι(p̂)

(6.6.6)

The following should be thought of as the ‘constant exit loop inclusion’ in
full generality.

Proposition 6.6.7. The assignments (6.6.5) and (6.6.1) extend to an ∞-
functor

□ : L→ EX∆[1].

Moreover, □ factors through (M ↓ N) ↪→ EX∆[1].

Proof. Let n ≥ 0 and γ ∈ Ln. We define its upper part, the restriction
of

γ : ∆[1]×∆[n]→ EX
along ∆[n] ' ∆{1} ×∆[n] ↪→ ∆[1]×∆[n], to be12

γ
∆{1}×∆[n]

:= ι(γ) ∈Mn ⊂ EX n, (6.6.8)

and, its low part, the restriction along ∆[n] ' ∆{0} ×∆[n] ↪→ ∆[1]×∆[n] to
be

γ
∆{0}×∆[n]

:= π(γ) ∈ Nn ⊂ EX n. (6.6.9)

Further, given i ∈ [n], we define the restriction along ∆[1] ' ∆[1] ×∆{i} ↪→
∆[1]×∆[n] to be

γ
∆[1]×∆{i}

:= (s0ι(γ|i), 1) = (s0ι(({i} ↪→ [n])∗γ), 1) ∈ P∆
0 ⊂ EX 1.

This is consistent: the identification ∆[1] ' ∆[1] × ∆{i} prescribes that the
restriction of (s0ι(γ|i), 1) along ∆{0} ×∆{i} ↪→ ∆[1]×∆{i} is simply

d1((s0ι(γ|i), 1)) = π(d1s0γ|i) = π(γ|i),
as desired – similarly for the upper part:

d0((s0ι(γ|i), 1)) = ι(d0s0γ|i) = ι(γ|i).
This reproduces (6.6.5) and (6.6.1).

Let now j ∈ {1, . . . , n + 1} and Sj : ∆[n + 1] ↪→ ∆[1] × ∆[n] be the exit
shuffle of index j. We define the restriction along Sj to be

γ
Sj

:= (sj−1ι(γ), j) .

12We abuse notation very slightly by forgetting the identification ∆[n] ' ∆{1} ×∆[n]. We
will resume this type of abuse below.
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This systematises our filling of the triangles (6.6.2) and (6.6.3). Let us check
that it is consistent with the definitions of γ

∆{0/1}×∆[n]
and γ

∆[1]×∆{i}
we

have given.
For the low part, we must have that the low part13 of γ

Sj
coincides with

the appropriate face of γ
∆{0}×∆[n]

. The low part is the restriction along the
identity inclusion ∆[j − 1] ↪→ ∆[n + 1]. Since (∆[j − 1] ↪→ ∆[n + 1])∗sj−1 =

(σj−1 ◦ ([j− 1] ↪→ [n+1]))∗ and since [j− 1] ↪→ [n+1]
σj−1−−→ [n] coincides with

the identity inclusion [j − 1] ↪→ [n], we have that

(∆[j − 1]
id
↪−→ ∆[n+ 1])∗(sj−1ι(γ), j) = π(γ|0,...,j−1),

as desired. (Alternatively, use the simplicial identities and the formula for [−,−
iteratively.)

On the other hand, the upper part14 is the restriction along ∆[n+1− j] =
∆{j, . . . , n + 1} ↪→ ∆[n + 1]. Since {j, . . . , n + 1} ↪→ [n + 1]

σj−1−−→ [n] is
∆[n+ 1− j] = ∆{j − 1, . . . , n} ↪→ ∆[n], we have

(∆{j, . . . , n+ 1} ↪→ ∆[n+ 1])∗(sj−1ι(γ), j) = ι(γ|j−1,...,n).

This is as desired, since Sj(k) = (1, i− 1) for k ≥ j, so that the upper part as
picked out in the simplex category ∆ by the image of [n+1− j]

+j
↪−→ [n+1]

Sj

↪−→
[1]× [n], which is {1}×{j−1, . . . , n}, is precisely γ

{1}×{j−1,...,n}
= ι(γ|j−1,...,n).

Finally, we must show that the restrictions along the Sj, thus defined,
glue. We will then have defined γ on every non-degenerate (n + 1)-simplex
of ∆[1] ×∆[n] consistently, which defines it on their colimit, which coincides
with the colimit ∆[1]×∆[n] ' colim∆[i]→∆[1]×∆[n]∆[i] itself, so that γ will be
defined.

Let therefore a pair of distinct exit indices j < j ′ in {1, . . . , n+1} be given.
The intersection of the images of Sj,Sj′ : [n + 1] ↪→ [1] × [n] as picked out
within ∆ consists of a purely low part, {0}× [j− 1], and a purely upper part,
{1} × {j′ − 1, . . . , n+ 1}. Let us write δ := j′ − j and consider the map

Sj∩j′ : ∆[n+ 1− δ] ↪→ ∆[1]×∆[n]

induced by the map Sj∩j′ : [n+ 1− δ] ↪→ [1]× [n] given by

i 7→

{
(0, i), i < j

(1, i− 1 + δ), i ≥ j.

In other words, Sj∩j′ is like Sj except with upper part shifted by j′ − j, and
so that (the images in [1] × [n] of) its low and upper parts coincide precisely
with those of Sj and Sj′ , respectively. We have that Sj∩j′ picks out precisely
the intersection of the images of Sj and Sj′ within ∆[1]×∆[n]. Moreover, its
factorisation through Sj as well as through Sj′ is given by identifying

∆[n+ 1− δ] = ∆{0, . . . , j − 1, j ′, . . . , n+ 1}
13This means of course the sub-simplicial set generated by the low vertices of the exit path.
14generated by the upper vertices
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in the sense that

∆{0, . . . , j − 1, j ′, . . . , n+ 1} ∆[1]×∆[n]

∆[n+ 1]

Θ

Sj∩j′

Sj or Sj′

commutes. This can be checked within ∆: since j < j ′, the restrictions of
Sj and Sj′ along [0, . . . , j − 1] ↪→ [n + 1] are both i 7→ (0, i), which coincides
with Sj∩j′ . For [n + 1 − δ] 3 i ≥ j, we have Θ(i) = i + δ ≥ j′ > j and so
SjΘ(i) = (1,Θ(i)−1) = Sj′Θ(i). This coincides with Sj∩j′(i) = (1, i−1+ δ),15

which proves the commutativity of the diagram.
We must show, therefore, that the two maps

Θ∗ γ
Sj
,Θ∗ γ

Sj′
: ∆[n+ 1− δ]→ EX

coincide. This will reduce to a question about the behaviour of [(−,−) := [−,−.
We observe

Θ = ∂j′−1∂j′−2 · · · ∂j+1∂j

: ∆[n+ 1− δ] ↪→ ∆[n+ 1− δ + 1] ↪→ · · · ↪→ ∆[n+ 1]

and note that Θ∗ = djdj+1 · · · dj′−2dj′−1 = djdj · · · djdj by repeated application
of the simplicial identitiy dαdβ = dβ−1dα for α < β. This implies

Θ∗ γ
Sj

= (djdj · · · djidιγ, [([(· · · [(j, j ′ − 1), j + 1), j))

= (djdj+1 · · · dj′−3dj′−2ιγ, j)

using the simplicial identitiy djsj−1 = id and then by repeated un-application
of the one mentioned previously. For the exit index, we used that [(α, β) = α
if β ≥ α, so that
[([(· · · [(j, j ′ − 1), j + 1), j) = [([(. . . [(j, j ′ − 2), j + 1), j) = · · · = [(j, j) = j.

On the other hand, using [(α, β) = α− 1 if β < α, we have
[([(· · · [(j′, j ′−1), j+1), j) = [([(· · · [(j′−1, j ′−2), j+1), j) = · · · = [(j+1, j) = j.

Now, the simplicial identity dαsβ = id if α ∈ {β, β+1} implies dj′−1sj′−1 = id,
so

Θ∗ γ
Sj′

= (dj · · · dj′−1sj′−1ιγ, [([(· · · [(j′, j ′ − 1), j + 1), j))

= (dj · · · dj′−2ιγ, j)

= Θ∗ γ
Sj
,

as desired.
As for the second statement, we note simply that the triple

(π,□, ι) : L→M × EX∆[1] ×N
factorises through (M ↓ N) by construction, due to (6.6.8) and (6.6.9). □

15We very much do need the commutativity of addition here!
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We obtain the only-if statement in Theorem 6.4.20 as a consequence.

Corollary 6.6.10. A cartesian Y -structure t : EX → Y (n,m) on the linked
manifold S induces a compatibility ρt : L→ Hom(π∗t|M(−), ι∗t|N(−)).

Proof. The map t induces a map (M ↓ N)→ (t|M ↓ t|N). Precomposing
with Proposition 6.6.7, we obtain

ρt = t ◦□ : L→ (t|M ↓ t|N).
This factors through (π∗t|M ↓ ι∗t|N) by the very construction of □: (6.6.9) and
(6.6.8) imply ev0 − = π(−) and ev1 − = ι(−). □

6.7. The if statement in Theorem 6.4.20

We start with an observation on the relationship between the box construc-
tion and (the proof of) Theorem 3.4.1.

Observation 6.7.1. For S a linked space, the box construction □ itself gives
an equivalence L→ (M ↓ N).

Proof. Let b ∈ Ln, and let β : ∆[1]×∆[n]→ N be the degenerate compos-
ition ∆[1]×∆[n]

pr
↠ ∆[n]

ι(b)−−→ N , so that β ∈ (L ↓ N). For j ∈ {1, . . . , n+1},
we have b Sj

= (sj−1ι(b), j), and, for Ψ: (L ↓ N) → (M ↓ N) the map from
the proof of Lemma 3.4.3,

Ψ(β)|Sj
= (β|Sj

, j) =

((
∆[n+ 1]

Sj

↪−→ ∆[1]×∆[n] ↠ ∆[n]
ι(b)−−→ N

)
, j

)
.

The underlying simplex map pr ◦Sj : [n+1]→ [n] is i 7→ (0, i) 7→ i if i ≤ j− 1
and i 7→ (1, i− 1) 7→ (i− 1) if i ≥ j, so pr ◦ Sj = sj−1. Thus

□ = Ψ ◦ pr∗

where pr∗ is the map L 7→ (L ↓ N) that sends b to β, our cylindrical constant-
loop inclusion. Now, since the box construction factors as □ : L → (M ↓ N),
we have the composition Φ ◦ □ : L → (L ↓ N), but since this restriction
Φ: (M ↓ L) → (L ↓ N) clearly factors through (L ↓ L), we have the composi-
tion Φ ◦□ : L→ (L ↓ L). Composing with Ψ finally yields

L
□−→ (M ↓ L) Φ−→ (L ↓ L) Ψ−→ (M ↓ L).

which reproduces in fact the equivalence from Theorem 3.4.1. We have, then,
that □ itself gives an equivalence L→ (M ↓ N). □
Definition 6.7.2. Let n ≥ 1, and let

P∆
n−1,e ⊂ P∆

n−1 ⊂ EX n

denote the set of exit n-paths of index e ∈ {1, . . . , n}. Further, write
∆[n]e := (∆[1]×∆[e− 1])q∆[e−1] ∆[n]

where the gluing is along
∆{1} × id : ∆[e− 1] ↪→ ∆[1]×∆[e− 1]
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and
id : ∆[e− 1] ↪→ ∆[n]

(cf. (6.6.6) for n = e = 2 and (6.6.4) for n = 2, e = 1).

Lemma 6.7.3. In the situation of Definition 6.7.2, there is a map
b− : P∆

n−1,e → (M ↓ N)e−1

which for each (Γ, e) ∈ P∆
n−1,e induces a map

bΓe ∪ Γ: ∆[n]e → EX .

Proof. Let
bΓe ∈ Le−1

be the lift to L of Γ|0,...,e−1 – the latter lies within ι(L) by the construction of
P∆ – and set

b(Γ, e) := bΓe ∈ (M ↓ N)e−1

using Proposition 6.6.7. Keeping in mind Footnote 12, we now observe that

∆[e− 1] ∆[n]

∆[1]×∆[e− 1] EX

id

∆{1}×id Γ

b(Γ, e)

commutes by construction: bΓe ∆{1}×∆[n]
= ι(bΓe) = Γ|0,...,e−1. This defines

bΓe ∪ Γ: ∆[n]e → EX . □

Remark 6.7.4. Note that we have not used in the proof of Proposition 6.6.7
that S is a linked manifold. Thus, the box construction gives a map L →
EX∆[1] for any linked ∞-category S = (M ← L → N ). Lemma 6.7.3 also
remains true in this generality.

Notation 6.7.5. For (Γ, e) ∈ P∆
n−1, we write (Γ, e) := Γ, e := bΓe ∪ Γ.

This defines a function
□ : P∆

n−1 →
∐

e∈{1,...,n}

Hom(∆[n]e, EX ),

which in turn yields a map

□ : EX n =Mn q P∆
n−1 qNn →Mn q

 ∐
e∈{1,...,n}

Hom(∆[n]e, EX )

qNn

by declaring it to be the identity on M,N ⊂ EX . (Here, P∆
−1 = ∅ is under-

stood.) We write
P□
n−1,e := P∆

n−1,e , P□
n−1 := P∆

n−1

for the images.
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Definition 6.7.6. The boxed exit path ∞-category EX□(S) of a linked ∞-
category S is defined, using Notation 6.7.5, by

EX□
n := EX n =Mn q P□

n−1 qNn

⊂Mn q

 ∐
e∈{1,...,n}

Hom(∆[n]e, EX )

qNn.
We declare the face and degeneracy maps to be those inherited from EX :

di α = diα , si α = siα .

Proof that EX□ is an ∞-category. It suffices to note that □ of Nota-
tion 6.7.5 is injective for any n ≥ 0: if Γ 6= Γ′, then the restrictions along
∆[n] ↪→ ∆[n]e of Γ, e , Γ′, e′ differ; and if e 6= e′, then they are already in
different connected components. This justifies the above definition in the first
place by making di and si well-defined. □
Lemma 6.7.7. For any linked ∞-category, we have EX ∼= EX□. Con-
sequently, any map f : S → T of linked ∞-categories induces an ∞-functor
f : EX□(S)→ EX□(T).

Proof. The isomorphism → is given by the map □ itself, which is func-
torial by the construction of EX□. The first statement follows from its dimension-
wise injectivity as noted above, and the second statement is trivial. □

Let now F : Y → BO(n+m) be a smooth tangential structure, and let S
be a linked manifold of top dimension n+m, together with a solid Y -structure
consisting of tM : M → Y |n, tN : N → Y |n+m, and ρ : L→ (π∗tM ↓ ι∗tN).

Assume moreover that ρ is induced by a compatibility of the form ρ : L→
BO(n+m)∆

2 |Y⊕ as in Lemma 6.4.15, which is to say that at ` ∈ L the edge
(π∗(W ⊕ TM)→ ι∗(TN))` = (Wπ(`) ⊕ Tπ(`)M → Tι(`)N)

(cf. (6.4.13)) is constant in BO(n+m).
Finally, let us write ArC := Ar(C) := C∆[1].

Lemma 6.7.8. Let S and its solid Y -structure be as above. Then each (Γ, e) ∈
P∆
n−1,e induces a map

te(Γ, e) : ∆[n]e → ArV ↪→.
such that

(1) te(Γ, e)|∆{0}×∆[e−1] = tM(π(bΓe)),
(2) te(Γ, e)|∆[n] = tN(Γ).

Proof. Let us first consider the lowest dimension: let n = 1 and so e = 1.
Let (Γ, 1) ∈ P∆

0,1 = P∆
0 and so bΓ1 ∈ L0. We have

∆[1]1 ∼= ∆[1] ∨∆[1]

and bΓe ∪ Γ is given by
(s0ι(bΓ1), 1) ∨ Γ: ∆[1] ∨∆[1]→ EX .
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The compatibility is given as a map ρ : L→ (π∗tM ↓ ι∗tN) ↪→ (ArV ↪→)∆[1]. Let
us, then, set

te(Γ, e) = ρ(bΓ1) ∨ tN(Γ) : ∆[1] ∨∆[1]→ ArV ↪→.
This is well-defined. Indeed, the first component is of the form

(ρ(bΓ1) : ∆[1]×∆{0} ' ∆[1]→ ArV ↪→) ∈
(
(ArV ↪→)∆[1]

)
0

with target
(ev1ρ(bΓ1) = ι∗tN(bΓ1) : Tι(bΓ1)N → FN

ι(bΓ1)
) ∈ (ArV ↪→)0 = Hom(∆[1],V ↪→)

by construction (Item 2 of Lemma 6.4.12). This is precisely the value of the
second component tN(Γ) at the gluing vertex:

d1tN(Γ) = tN(d1Γ) = tN(ι(bΓ1))

since ι(bΓ1) = Γ|0 by construction (see the proof of Lemma 6.7.3). That we
have fulfilled Condition 2 is clear. For Condition 1, note similarly that

ev0ρ(bΓ1) = π∗tM(bΓ1) = tM(π(bΓ1))

by Item 1 of Lemma 6.4.12.
The general case is entirely analogous: we set

te(Γ, e) = ρ(bΓe) ∪ tN(Γ) : ∆[n]e → ArV ↪→.
This is well-defined: since bΓe ∈ Le−1, ρ thereof is of type ∆[1]×∆[e− 1]→
ArV ↪→. Further, its target (e− 1)-simplex is

ev1ρ(bΓe) = ι∗tN(bΓe) = tN(Γ|0,...,e−1) = tN(Γ)|0,...,e−1,

so that the two components glue. Finally, that the two conditions are fulfilled
can be seen in the same way as above. □

Now, Lemma 6.7.8 can be restated as saying that a solid Y -structure on a
linked manifold S induces a map

te : P□
n−1,e → Hom(∆[n]e,ArV ↪→).

This systematises homotopy-commuting diagrams like (6.5.7).

Lemma 6.7.9. The map te factors as
P□
n−1,e → Hom(∆[n]e, Y (n,m))→ Hom(∆[n]e,ArV ↪→)

along Y (n,m) ↪→ ArV ↪→.

Proof. The restriction of te along
(∆[1]×∆[e− 1] ↪→ ∆[n]e → ArV ↪→) ∈ (ArV ↪→)

∆[1]
e−1

lifts to
(Y (n,m))

∆[1] ↪→ (ArV ↪→)∆[1]

by Lemma 6.4.12, and so does the restriction along
∆[n] ↪→ ∆[n]e → ArV ↪→

by the definition of tN . □
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This suggests that tM , tN , and the te should couple together to give a map
from EX□ (or equivalently EX ) to a box-like variant of Y (n,m). We will now
set up such a version.

In order to do so, we will relax the trivial idea of Notation 6.7.5 and Defini-
tion 6.7.6 to a slightly less trivial one. In the former, non-invertible n-simplices
are not of type ∆[n]e → EX generally, but are only those that are given by
the box construction. Where the simplex {1} × ∆[e − 1] is mapped to is de-
termined exactly by the link embedding ι : L ↪→ N . In an ∞-category that is
not given as an exit path ∞-category C of a span, however, there is no such a
priori information. However, if C is ‘exit-type,’ we can imitate this construc-
tion without having to reduce fully to a span. We leave this to future work
and will content ourselves with treating the categories at hand.

Definition 6.7.10. Let V ↪→|n,m be as in Corollary 6.3.12, and consider the
simplicial set V ↪→|n,m whose objects are those of V ↪→|n,m, and, for k ≥ 1,

V ↪→|n,m
k
:= BO(n)q

 ∐
e∈{1,...,k}

Homn,m
sSet(∆[k]e,V ↪→)

qBO(n+m)

where
Homn,m

sSet (∆[k]e,V ↪→) :=

(BO(n) ↓ BO(m)⊕ BO(n))V
↪→

e−1 ×Ar(V↪→)e−1 HomsSet (∆[n]e,V ↪→)×V↪→
n
BO(n+m)k

={
α : ∆[k]e → V ↪→ : α|∆[k] ∈ BO(n+m)k,

α|∆[1]×∆[e−1] ∈ (BO(n) ↓ BO(m)⊕ BO(n))V
↪→

e−1

}
.

There are evident maps
di : Hom

n,m
sSet(∆[k]e,V ↪→)→ Homn,m

sSet(∆[k − 1][e,i ,V ↪→)

when the i’th face is vertical in the obvious sense, and maps

di : Hom
n,m
sSet (∆[k]e,V ↪→)→ V ↪→|n,m

'

k−1
= BO(n)k−1 qBO(n+m)k−1

if it is low or upper instead; and maps
si : Hom

n,m
sSet(∆[k]e,V ↪→)→ Homn,m

sSet(∆[k + 1]]e,i ,V ↪→)

which all together make V ↪→|n,m an∞-category, as can be proved analogously
to Theorem 3.2.11.

There is a generalisation of the idea of Remark 5.2.53 that gives a map of
type V ↪→|n,m → V ↪→|n,m :

Construction 6.7.11. Let Γ: Path[k + 1]→ B⊕O be a k-simplex of V ↪→|n,m
whose vertices hit both BO(n) and BO(n +m). Then there is a unique nat-
ural number e ∈ {1, . . . , k} such that Γ(5)|0,...,e−1 ∈ BO(m) ⊕ BO(n) and
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Γ(5)|e,...,k ∈ BO(n +m),16 where Γ(5) ∈ BO(n +m) is as in Remark 5.2.53
using Construction 5.2.31.

We may now imitate Lemma 6.7.3 and Notation 6.7.5: using the coordinate
projection BO(m)⊕ BO(n)→ BO(n), we obtain

Γ(5)|0,...,e−1 ∈
(
(BO(n) ↓ BO(n+m))V

↪→|n,m
)
e−1

,

which glues along its restriction to its top side ∆{1} × ∆[e − 1] with Γ(5)
itself, so that we have constructed

Γ(5) := Γ(5)|0,...,e−1 ∪ Γ(5).

Proposition 6.7.12. The rule Γ 7→ Γ(5) of Construction 6.7.11 lifts to an
equivalence

5∗
: V ↪→|n,m

∼→ V ↪→|n,m .

Proof. If Γ ∈ V ↪→k lies entirely within BO(n) or BO(n +m), then we let
5∗

= 5∗ be the map of Remark 5.2.53. The rule is evidently simplicial and
a bijection on objects, so we need only show that it induces equivalences on
morphism spaces. Temporarily, let us write V := V ↪→|n,m and V := V ↪→|n,m ,
and take V ∈ BO(n), K ∈ BO(n+m).

Similarly to the proof of Theorem 3.3.1, we pass to the right-pinched model
and obtain Hom

V
(V,K) ' HomR

V
(V,K) = {V } ×

V
V /K. In order

to write this in terms of V instead, note first that the right-pinched model
restricts us again to maximal exit index, so at each level k, we need only
consider e = k + 1; that is, there are natural bijections(

{V } ×
V

V /K

)
k

∼= {V } ×BO(n)k Hom
n,m
sSet(∆[k + 1]k+1,V)

where the morphism set projects to BO(n) by restricting along the ‘bottom-
side’ inclusion ∆[k] ∼= ∆{0} ×∆[k] ↪→ ∆[k + 1]k+1.

We can now turn the (ordinary) colimit defining ∆[k]e into a(n ordinary)
limit of morphism spaces, so that the resulting natural bijections yield an
isomorphism

HomR

V
(V,K) ∼= {V } ×BO(n) (BO(n) ↓ BO(m)⊕ BO(n)) ×V V/K

of simplicial sets, where the fibre product over V is taken on the right with
respect to the canonical right-fibration V/K → V and on the left with respect
to the ‘top-side’ evaluation (BO(n) ↓ BO(m)⊕ BO(n))

ev1−−→ V; and the fibre
product over BO(n) is taken with respect to the ‘bottom-side’ evaluation.

16We can allow Γ to lie wholly within BO(n) or BO(n + m)k in an evident manner by
considering e ∈ {0, . . . , k + 1}.
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We conclude by observing that (BO(n) ↓ BO(m) ⊕ BO(n)) ' BO(m) ×
BO(n) by Theorem 3.4.1, and so

HomR

V
(V,K) ' {V } ×BO(n) (BO(m)× BO(n))×V V/K

∼= (BO(m)⊕ {V })×V V/K

' P (BO(n+m))BO(m)⊕{V },K

' HomV(V,K)

using the calculation in the proof of Lemma 6.3.10, and where the mapBO(m)×
BO(n)→ V is ⊕, factoring through BO(n +m). The map 5∗ induces pre-
cisely the inverse equivalence (BO(m)⊕{V })×VV/K → HomR

V
(V,K). □

Corollary 6.7.13. A solid Y -structure on a linked manifold S induces a
cartesian Y -structure on S.

Proof. Using Proposition 6.7.12, we may pull back Y (n,m) ↪→ ArV ↪→,
which is already over V ↪→|n,m, along V ↪→|n,m ' V ↪→|n,m, and write Y(n,m)

for the result. Now, Lemma 6.7.9 can be restated as saying that the solid
structure on S induces a lift EX□(S) → Y(n,m) , which concludes the proof
by Lemma 6.7.7. □
Remark 6.7.14. The proof of Theorem 6.4.20 does not depend on our assump-
tion that the rank of the smooth tangential structure coincide with the bulk
dimension of the linked space in question: this only simplified some notation.
The statement is therefore true in its stated generality. The corresponding
modifications are clear – for instance, in Definition 6.4.18, the structure on N
will be determined by a bundle isomorphism TN ⊕ Z ∼= FN , and we will ask
for an isomorphism π∗W ∼= NNM ⊕ ι∗Z, and again continue with an equality
of classifiers using Lemma 6.1.1.





CHAPTER 7

Divide and conquer

7.1. Maps of linked spaces

In this section, we propose a notion of a map of linked spaces. Span
maps clearly induce maps between the respective exit path ∞-categories. By
leveraging Theorem 3.3.1, we will suggest a simple definition of maps of linked
spaces in general. Any such notion should be well-behaved in two respects:

• maps should compose, and
• they should induce functors on exit paths ∞-categories.

Our proposal fulfills both criteria (by Remark 7.1.4 and Proposition 7.1.10,
respectively) and is fairly straightforward. We will start with an obvious ex-
tension of Definition 3.2.14 that lets us deal with more strata while retaining
depth 1, and our exit path∞-category construction of Definition 3.2.2 extends
in the obvious manner.

The only new part of the definition is that we also assign spans over indi-
vidual elements of the stratifying poset, with the consequence that we may now
also consider maps from non-trivially linked spaces to ordinary (non-stratified)
spaces. The definition we give is slightly more relaxed than that of ordinary
stratified maps, but it does reproduce stratified maps: see Remark 7.1.12.

Definition 7.1.1. A linked space, denoted by
M → P,

of depth 1 is a collection of spaces indexed over a poset P of depth 1: we have
a space Mp for each p ∈ P, and for each arrow p ≤ q a space Lpq, called a link,
sitting in a span

Mp
π←− Lpq

ι−→Mq,

such that
• if p ≤ q but p 6= q, then π is a proper fibre bundle and ι a (closed)

embedding;1
• if p = q, then

Lpp =M I
p ,

the unbased path space of Mp (I = [0, 1]). The exponential is endowed
with the compact-open topology, and

π = ev0, ι = ev1

1The closedness requirement is somewhat superfluous in general: the construction of EX
requires only that Sing•(ι) be a monomorphism. Still, going backwards may be problematic;
cf. the proof of Lemma 6.1.1.

129
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are, respectively, the source and target evaluations.
We call M → P a linked manifold (of depth 1) if all Mp, as well as Lpq whenever
p 6= q, are smooth riemannian manifolds.

The appropriate construction of EX (M → P) is entirely analogous to the
one we’ve given, which is the case |P| = 2. The case of higher depth, which is
naturally more complicated, will appear elsewhere – see Section 7.3 for an idea
(though not for the exit path construction), and Section 3.5 for a suggestion
to circumvent a native higher-depth treatment by iterating the depth-one exit
path construction.

The definition of a linked ∞-category of depth 1 is clear from the defini-
tion above: the π are required to be right fibrations, the ι cofibrations, and
the Lpp = M I

p are replaced by the arrow ∞-category ArMp = M∆[1]
p . The

following definition also applies in this generality.
Definition 7.1.2. A map f of linked spaces, written

M N

P Q

, (7.1.3)

consists of a map of posets f : P→ Q together with maps of spans
fpq : (Mp ← Lpq →Mq)→ (Nf(q) ← L′

f(p)f(q) → Nf(q))

for each pair p ≤ q in P. This means that fpq, with a slight abuse of notation,
is a commutative diagram of the form

Lpq L′
f(p)f(q)

Mp ×Mq Nf(p) ×Nf(q)

π×ι

fpq

π′×ι′

fp×fq

with no further compatibility conditions since we are in depth 1 (but cf. (7.3.1)
for depth 2).
Remark 7.1.4. Since both poset maps and span maps compose, maps of
linked spaces compose.
Warning 7.1.5. Diagrams of type (7.1.3), while literal in stratified geometry,
are only figurative in the linked context!

We have thus obtained a notion of mapping from a non-trivially linked
space, say of type (M0 ← L = L01 → M1) = (M → {0 < 1}) to a smooth
space X. The latter is naturally a linked space indexed over the trivial poset
∗, so that the its full expression is X ev0←−− XI ev1−−→ X. Thus, a map

M X

{0 < 1} ∗

(7.1.6)
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is a commuting square

L XI

M0 ×M1 X ×X

π×ι

fL:=f01

ev0×ev1

f0×f1

. (7.1.7)

The sector of (7.1.6) over the two identities in {0 < 1},

M I
0 XI

M0 ×M0 X ×X

and
M I

1 XI

M1 ×M1 X ×X

,

is determined by f0 and f1.
What one might object to is that if the linked spaces in question are induced

by depth-1 stratified spaces, then maps in our sense are more relaxed than
stratified maps of the corresponding spaces: the latter give only a subset of
the former. While this relaxation poses no problem for our purposes, let us
illustrate it with the simplest example where it is detectable.

Example 7.1.8 (linked paths in a smooth space). Let M → P be induced by
R≥0 with its standard stratification, i.e., M0 = {0}, M1 = R>0, L = L01 = ∗,
with ι = ι+ : L = ∗ ↪→ R>0 is given by the choice of some point + ∈ R>0. Let
also X → ∗ be induced by a smooth manifold X as above. Then

∗ XI

{0} ×R>0 X ×X

id×ι+

γ:=f01

f0×f1

is determined, besides the stratum-wise maps, by the choice of a single path
γ : f0(0)→ f1(+)

in X.
Similarly, if [0, 1]→ {0 < i > 1} (i for interior) is the linked space of depth

1 with three strata induced by the obvious stratification on [0, 1],2 with both
links given again by ∗ and the embeddings into (0, 1) determined by a pair of
points ε < δ in (0, 1), then a linked map

[0, 1] XI

{0 < i > 1} ∗

(7.1.9)

2This is not a poset-stratified space in the usual sense, since [0, 1] → {0 < i > 1} is not
continuous with respect to the Aleksandrov topology on the target. We see in particular that
Definition 7.1.1 extends ordinary stratified spaces non-trivially but without losing access to
topology.
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is determined, besides the stratum-wise maps, by two paths
γε : f0(0)→ fi(ε),

γδ : f1(1)→ fi(δ)

in X (see Figure 1).

Figure 1. A general closed linked path as in (7.1.9).

Proposition 7.1.10. Given a map f of type

M N

P Q

in the sense of Definition 7.1.2, there is an induced map
f = f∗ : EX (M → P)→ EX (N → Q)

of exit path ∞-categories. In fact, this defines a(n ordinary) functor
LS→ Cat∞

from linked spaces to ∞-categories and ∞-functors.

Proof. We will describe the construction only at the level of the corres-
ponding topological categories.3 Without loss of generality, assume |P| = 2,
since EX (M → P) otherwise splits dimension-wise into disjoint unions accord-
ing to pairs of neighbouring strata of differing depth. The only non-obvious
case is when Q = ∗, X := N∗. Let then p 6= q in P, and p ∈ Mp, q ∈ Mq.
We observe f∗ in terms of the corresponding locally-Kan categories: on non-
invertible paths, we will provide maps

HomEX (M)(p, q)
Thm'
3.3.1
P(Mq)(Lpq)p,q → P(X)f(p),f(q) ' HomSing(X)(f(p), f(q))

(7.1.11)

3Due to some contractible choices, a full simplicial construction requires equivalent boxed
replacements, and the proof technique of Corollary 6.7.13 applies mutatis mutandis. As this
will not be needed, we leave it to the interested reader. The proof sketch provided here is
an approximation in the spirit of Section 6.5.
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while the commuting square (7.1.7) is given. The latter, however, induces,
after pulling back onto p ∈Mp (and writing L := Lpq), the square

Lp XI

{p} ×Mq {f(p)} ×X

fL

.

Thus, the initial point γ0 of a path γ ∈ P(Mq)Lp,q yields the path fL(γ0) in X
from f(p) to γ0, so

f∗ : γ 7→ fL(γ0) ∗ γ
provides (7.1.11), as desired (see Figure 2). (We have not distinguished L and

Figure 2. The proof of Proposition 7.1.10 for (M → P) =
({0}↞ S1 ↪→ R2r{0}) and N = X = R2, with f ‘the identity’;
cf. Remark 7.1.12.

ι(L) ⊆Mq in notation.) The second statement is left to the reader. □

Finally, we note, as proof of concept, that stratified maps induce linked
maps.

Remark 7.1.12 (linked maps from stratified maps). Consider a link projection
π : L↠M . The fibrewise open cone on π is defined to be

C(π) = L×R≥0 qL×{0} M. (7.1.13)

Suppose that a linked space S =
(
M

π↞ L
ι
↪→ N

)
is induced by a (conically-

smooth) stratified space X over {0 < 1} with strata X0 = M and X1 =
X rX0 = N in the sense that

X ∼= C(π)qL×R>0 N.

and ι by the implicitly used open embedding
L×R>0 ↪→ N
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at a fixed positive time, say 1. This construction appears in [6, the proof of
Lemma 6.1.7]. We interpret it also as a way to naturally associate a (conically-
smooth) stratified space to any linked space.

Now, let Y be smooth and f : X → Y a stratified map. There is an induced
map of linked spaces S → Y whose non-obvious component fL : L → Y I

covering f |0×f |1 : M×N → Y ×Y can be given, at γ0 ∈ L (using notation from
the proof of Proposition 7.1.10), by simply following along the time coordinate
in C(π) from 0 to 1, from f |0(π(γ0)) to ι(γ0).

The construction we recalled in Remark 7.1.12 is key to relating linked
spaces to ordinary stratified spaces. We fix it in a definition for reference.

Definition 7.1.14. Let S =
(
M

π↞ L
ι
↪→ N

)
be a constructible linked mani-

fold (see Definition 6.1.10). Then there is an open embedding L×R>0 ↪→ N ,
and we call the resulting space

|S| := C(π)qL×R>0 N,

with C(π) defined by (7.1.13), its (linked) realisation. It is naturally stratified
over [1] with the cone locus being the 0-stratum and its complement the 1-
stratum.

Remark 7.1.15. The linked space associated with the realisation of a con-
structible linked manifold is the original constructible linked manifold itself.

7.2. Duals of bordisms

The rest of this chapter should be read as a continuation of Section 1.3, so
we assume its content.

Notation 7.2.1. In this section, we will resume the notation n := Rn. This
will help clarify the different roles of some R-factors that appear below.

The following definition reproduces well-known pictures from [67]. Besides
being in a different context – that is, besides working with manifolds with
boundaries in the ordinary sense – and at this stage not referring to tangential
structure, it is, in essence, not new. The usefulness of this simplistic point of
view will start manifesting itself first in our treatment of cutting and gluing
in Section 7.5, which in essence also is not new; then in Section 7.4 when it
will let us extend these ideas to encompass defect submanifolds, and then also
tangential structures.

Definition 7.2.2 (The Philip II of Macedon (P 2) construction on bordisms).
Let M→ P be the linked manifold of depth 1 given by a manifold M with

boundary ∂ := ∂M (see Example 3.2.15). We associate with M a map
p : M→M!

of linked manifolds, defined as follows.
Let P be the poset with an element 0 and two elements i, i+ for each

connected component ∂i of ∂ =
∐

i ∂i, together with arrows i < 0 and i < i+
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and no other non-identity arrows. Further, let P! be the poset containing 0
and every i, but with reversed arrows 0 < i. Evidently, P is of depth (at most)
1, as is P!.

Let
M→ P

be the linked space which over a pair i < 0 is defined to be

∂i
id←− ∂i ↪→M◦,

and
∂i

id←− ∂i ↪→ ∂i × 1

over i < i+. That is, over i < 0 we apply Example 3.2.15 to the manifold-with-
boundary M r qj 6=i∂j, and over i < i+ we apply the same to the manifold-
with-boundary ∂i ×R≥0. Further, let

M! → P!

be the linked space given over each pair i < 0 by

0
id←− 0 ↪→ 1,

i.e., Example 3.2.15 applied to the half-line.
Finally the map p is given by, first, the poset map

P→ P!,

0, i 7→ 0,

i+ 7→ i.

Consequently, it is necessarily given by the trivial maps
M◦, ∂i ↠ 0

on the 0- and i-strata, and again necessarily by ∂i ↠ 0 on the links; and we
define it to be the coordinate projections

∂i × 1 ↠ 1

on the i+-strata.
We call the rule that assigns p to M the P 2 construction.4 We call M the

collar of M, and M! its dual.5

Remark 7.2.3. The collar M → P is merely the interior M◦ given a new
stratification, i.e., a refinement of M◦. Namely, we take, for each boundary
component ∂i, the image of the link embedding discussed in Example 3.2.15
as a codimension-1 submanfold inside M◦. Since the normal bundle of the
boundary is trivial in any bordism, we can present M◦ as a collar-gluing along

4The phrase ‘divide and conquer’ is attributed, at least by Wikipedia, to Philip II of Mace-
don, who kindly shared his initial with ‘projection’. Fortunately, calling it the ‘DAC con-
struction’ would have been equally undescriptive.
5The idea vaguely resembles that of ‘quadratic duals’ in [38, §2.1.9]. Longer but more
descriptive would have been to call M ‘M divided’ and M! ‘M conquered.’
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this submanifold, i.e., obtain a diffeomorphism
M◦ ∼= ∂i ×R≥0 q∂i M◦.

If M has only finitely (say k) many boundary components, we can choose link
embeddings with disjoint images, and present M◦ as a simultaneous k-fold
collar-gluing in the same manner, and the linked manifold associated with the
resulting stratified manifold is precisely the collar. The purely linked approach
accepts arbitrarily many boundary components.

Example 7.2.4. A smooth manifold M (which by our convention means
∂M = ∅) is assigned by P 2 the trivial map

M

0

.

Example 7.2.5. Let M be a manifold with connected boundary ∂. In light
of Remark 7.2.3, the collar as an ordinary stratified space is given by

M = ∂ ×R≤0

∐
∂×{0}

M. (7.2.6)

whose associated linked space is

∂ ∂

∂ ×R<0 = ∂ × 1 ∂ M◦

id×{+}
= =

ι+ (7.2.7)

or
∂ × 1

id×{+}
←−−−−↩ ∂

ι+
↪−→M◦ (7.2.8)

for short (see Figure 3).

Figure 3. The three strata of the linked collar of a manifold
with connected boundary.

The dual is then
M! =

(
1

+←−↩ {0} = 0
=−→ 0

)
,
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namely the linked half-line R≤0. The projection

M

M!

p

is given by
∂ ∂

∂ × 1 ∂ M◦

0

1 0

id×{+}
= =

ι+

pr2

+
=

, (7.2.9)

for which we also write

∂ × 1 ∂ M◦

1 0

id×{+} ι+

+

, (7.2.10)

with the above meaning understood.6

Example 7.2.11 (∂ = ∂L q ∂R). Let M be a bordism with ∂M = ∂L q ∂R
with ∂L, ∂R connected. We see M as a linked space M of depth 1 but now
with three strata:

∂L ∂R

∂L M◦ ∂R

=
ι+L

ι+R
= .

We see that the collar M in short notation (cf. (7.2.8)), is

∂L × 1 = ∂L ×R<0

id×{+L}←−−−−−↩ ∂L
ι+L

↪−−→M◦ ι+R←−−↩ ∂R
id×{+R}
↪−−−−−→ ∂R ×R>0 = ∂R × 1,

the linked version of M = ∂L × R≤0

∐
∂L×{0}M

∐
∂R×{0} ∂R × R≥0, and the

dual M! is
0 0

1 0 1

+L +R ,

the linked version of M ! = R{0}, the real line with three-fold stratification
given by (say) the defect {0} ⊂ R and the two components of its complement.

6We introduce better notation in Notation 7.2.16 which however obscures the link maps.
For this reason, we keep this more verbose version until then.
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We write M! =
(
1

+L←−↩ 0 +R
↪−→ 1

)
. We observe the projection p : M → M! to

be given, in short notation (cf. (7.2.10)), by

∂L × 1 ∂L M◦ ∂R ∂R × 1

1 0 1

id×{+L} ι+L
ι+R id×{+R}

+L +R

with the link-wise necessarily trivial.

A distinct advantage of this approach is that it can treat defects on the
same footing as boundaries with no modification.

Example 7.2.12 (‘defects as bordisms’: codimension ≥ 2). Let M be a
smooth n-manifold and Σ ⊂M a smooth submanifold of codimensionm, which
yields a linked manifold M with link S := L = S(NMΣ) (see Example 6.1.8).
Assume S is connected, so m ≥ 2. If M is constructible (in that the normal
bundle of S inside M rΣ is trivialised), then we can assign to it the collar M,
again three-fold stratified, given by

S S

S× 1 S M r Σ

= =

and the dual M! can be taken to be the half-line
(
1←−↩ 0 =−→ 0

)
together with

the obvious projection M → M!. Thus, closed submanifold defects can be
treated exactly the same way as bordisms. Analogous considerations apply
when one allows boundary components and multiple non-intersecting defect
submanifolds.

Remark 7.2.13. Note that the ‘right side’ of the collar in Example 7.2.12,
S

=↞ S ↪→ M r Σ is simply the linked version of the blow-up (a.k.a. unzip in
the conically-smooth literature) of M at Σ. In light of the previous examples,
we can identify the linked spaces induced by bordisms as those whose blow-ups
coincide with themselves. The ‘left side’, in contrast is simply the collar as in
the simple codimension-1 case.

Example 7.2.14 (‘defects as bordisms’: codimension 1). If Σ ⊂M is a smooth
submanifold of codimension 1, then its link L = S(NMΣ) ∼= ΣqΣ will be two
copies of Σ itself. The collar, in short notation, can be chosen to be

M = ((Σ q Σ)× 1←↩ Σq Σ ↪→M r Σ)

and the dual can be taken to be the half-line again. The projection M→M!

is, exactly as in Example 7.2.12, given by sending the two strata Σ q Σ and
M r Σ to 0 and the stratum (Σq Σ)× 1 to 1.

Remark 7.2.15. There is a different approach to closed submanifold defects
than Example 7.2.12 which reflects the topology around the defect submanifold
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better, which is the topic of Section 7.4. The version above should be read as
the bare-bones, minimalist approach.
Notation 7.2.16. We will write

M NL

for a linked space of type M
π↞ L

ι
↪→ N .

7.3. Corners: a teaser

In this section, we will provide a slightly informal treatment of corners in
the linked context, as well as the extension of (−) ↠ (−)! to depth 2. A full
theory in arbitrary depth lies beyond the scope of the present work, but we
will point to the essential ingredients. One could perhaps also repurpose the
idea of generalised links of Douteau–Waas [26, §2.5] for a similar Ansatz. The
contents of this section are not needed in any other section, and so it can be
skipped.

Figure 4 gives an essentially full picture of M ↠ M! induced by a manifold
M with a corner – the passage to multiple corners is analogous to the passage
to multiple boundary components (cf. Example 7.2.11).

Figure 4. Construction of M ↠ M! induced by M with con-
nected boundary ∂ = ∂L ∪ ∂2 ∪ ∂R, with ∂2 denoting the corner.

Here, M is a depth-2 linked space with 9 strata: those of full dimension
are (isomorphic to) ∂2×2, ∂R×1, ∂L×1 and M2; then there is a cross’ worth
of codimension-1 strata, depicted by solid lines in Figure 4, and finally their
codimension-2 intersection, depicted by the solid point.

It is evident from the figure how the depth-2 dual

M! =


∂2 ∂R

∂L M◦


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must be assembled by considering the adjacent depth-1 pairs. This is illus-
trated in Figure 5.

Figure 5. The assembly of a corner: M! from depth-1 data.

Now, recall Definition 7.1.1. Indeed, M! is, as a stratified space, the
quarter-plane R≤0 × R≤0. Let us introduce it as a product linked space, the
simplest type of linked space of depth 2. Each factor is 0 10 stratified
over P = {0 < 1}, so the product is

0× 0 1× 0

1× 0 1× 1

0

0 0×0 0

0

stratified over

P×P =


(0, 0) (1, 0)

(1, 0) (1, 1)

<< < <

<

 .

In a general product of depth-1 linked spaces, the new links will be given, for
(p, q) ≤ (p′, q′) in P×Q, by

L(p,q),(p′,q′) = Lp,p′ × Lq,q′ .

In a general linked space of depth 2 (or indeed in any depth) indexed over a
poset P of depth 2, we ask that, for each concantenation p < q < r, commuting
diagrams

Lpq ×Mq Lqr Lpr

Mp ×Mr

(7.3.1)

be given. We call the maps Lpq ×Mq Lqr → Lpr concatenation maps and the
condition that they cover Mp ×Mr that concatenation be rel endpoints. The
terminology is justified in view Theorem 3.3.1; see also Remark 7.1.12.
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Finally, the projection p : M ↠ M! is visible in Figure 4: ∂R/L × 1 project
to the two coordinates of the quarter plane, ∂2× 2 projects to 2, and M◦ and
its closure are collapsed to the corner point of the quarter plane.

7.4. Duals of bordisms with defect submanifolds

In Examples 7.2.12 and 7.2.14 we treated defect submanifolds as if they
were boundary components. However, this relies on forgetting some informa-
tion that one would not wish a defect version of the TFT of a disk algebra to
forget.

For instance, a point defect in the plane is assigned the projection

R2 r {0} S1 S1 × 1

0 1

S1S1

by Example 7.2.12, pushing forward the algebra along which will give a 1-disk
algebra with a module. However, one would expect that the point defect,
having codimension 2, be assigned a 2-algebra (for an input 2-algebra), acting
on the 0-algebra assigned to the bulk. In other words, the construction of
Example 7.2.12 integrates out one dimension too many.

We will start with exactly this example.

Example 7.4.1. Let M be the euclidean plane with a point defect at the
origin. We associate with it the projection M→M! given as follows:

R2 r {0} S1 S1 × 1

0 S1 × 1

S1S1

S1

While this is certainly a valid map of linked spaces, it is not immediately
obvious what its ordinary stratified counterpart is.

Let us discuss the restriction to the ‘neighbourhood of the defect,’ i.e., the
square in the diagram above. Realising to stratified spaces in the sense of
Definition 7.1.14, we obtain∣∣∣∣S1 S1 × 1S1

∣∣∣∣ = D2 r {0},

the closed 2-disk without its origin, equipped with the boundary stratification;
and ∣∣∣∣ 0 S1 × 1S1

∣∣∣∣ = R2
{0} = |M|,

the plane with a point defect again. (We will see that all point defects are
‘locally self-dual’.) The realised projection

|p| : D2 r {0} → R2
{0} (7.4.2)
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can be described as the map that sends the whole boundary circle to the origin,
and is given by

|p|(x) =
(

1

|x|
− 1

)
x

away from the boundary.
In the framed case, the input E2-algebra A induces a factorisation algebra

FA on the bulk S1 × 1 ∼= R2 r {0} of the target space (in the usual way: see
[36, §4.2]; also [37]), and a constructible factorisation algebra on the latter is
equivalent to the datum of an E1-module over

∫
S1×R

A. Indeed,
∫
S1×R

A ' UA
is the universal enveloping E1-algebra of A, either by definition as in [36, §7.1],
or as a theorem as in [33, Proposition 3.16], with a more algebraic definition
in the spirit of [38, §1.6] given in [33, Definition 2.5].

We generalise the idea of Example 7.4.1 in the following definition. For
simplicity, we will consider a single closed defect submanifold and leave the
details of a treatment of an arbitrary number of non-intersecting ones to the
reader, which is analogous to Definition 7.2.2.

Definition 7.4.3 (P 2 on defects). Let Σ ⊂M be a closed smooth submanifold
of codimension k with trivialised normal bundle N = NMΣ. The P 2 construc-
tion on defects assigns to the linked space M associated with the stratified
space Σ ⊂M the projection p : M→M! given by

M r Σ Σ× Sk−1 Σ× Sk−1 × 1

0 Sk−1 × 1

Σ×Sk−1 Σ×Sk−1

Sk−1

. (7.4.4)

Example 7.4.5. If Σ ⊂M has codimension 1, then∣∣M!
∣∣ = R{0},

a line with a point defect, but with only two strata, and so with link {±}.

Remark 7.4.6. Similarly to the case of a bordism (cf. Remark 7.2.3), the
collar is the ‘interior’ with a new stratification, in that M is the linked space
associated with

M r Σ ∼= (M r Σ)qΣ×Sk−1 Σ× Sk−1 ×R≥0.

The square in (7.4.4), the ‘neighbourhood of the defect,’ is given after linked
realisation by the boundary-collapsing, norm-reversing map

|p| : D(N)r Σ→ Rk
{0}

generalising Example 7.4.1. Here, the domain is the disk bundle of the normal
bundle of Σ with the zero section taken out, equipped with the boundary
stratification. The map |p| sends the boundary S(N) to the defect {0}, and is
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otherwise given, using a trivialisation of the normal bundle and a metric, by
(D(N)r Σ)◦ ∼= S(N)×R

∼= Σ× Sk−1 × (0, 1)→ Rk r {0},

(p, q, x) 7→
(

1

|x|
− 1

)
q.

Finally, we will combine Definitions 7.2.2 and 7.4.3, and again, for simpli-
city, will consider a single boundary component and a single defect subman-
ifold, leaving the repetition for mutliple such to the reader; it is also spelled
out in the proof of Proposition 7.5.5.

Definition 7.4.7 (P 2 on bordisms with defects). Let Σ ⊂ M◦ be a smooth
closed submanifold of codimension k with trivialised normal bundle in the
interior of a manifold M with connected boundary ∂. We define its bulk to be

M◦ :=M r {Σq ∂}.
The P 2 construction assigns to M stratified by Σ and ∂ the projection

∂ × 1 ∂ M◦ Σ× Sk−1 Σ× Sk−1 × 1

1 0 Sk−1 × 1

∂∂ Σ×Sk−1 Σ×Sk−1

0 Sk−1

.

Example 7.4.8. If M is (the linked space associated with) a bordism with
a single boundary component and two defect submanifolds with trivialised
normal bundle, one of codimension 2 and one of codimension 1, then

∣∣M!
∣∣ is

The middle ball is the unique point-stratum 0, the black half-line depicts the
boundary component conquered,7 the green half-lines depict the codimension-
1 defect conquered and make up a single stratum (see Example 7.4.5), and the
orange plane through 0 depicts the codimension-2 defect conquered.

Remark 7.4.9. The realisations |M!| of the conquered manifolds are conically
smooth: for instance, the real plane with a half-line attached to it (as in part of
the picture in Example 7.4.8) is the stratified open cone C(∗qS1), a conically-
smooth basic. The general case is analogous. Similarly, the realised collar

∣∣M∣∣
is conically-smooth, being again simply the bulk M r {

∐
Σi q

∐
∂j} with a

new stratification by mutually disjoint closed submanifolds.

7See Footnote 5.
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7.5. Cutting and gluing

We will suspend Notation 7.2.16 briefly for the sake of clarity – it will come
back into effect momentarily.

Definition 7.5.1. Let M be a bordism, with or without defect submanifolds.
A cut locus ι : Σ ⊂M◦ is a closed codimension-1 submanifold in the interior in
the sense of Definition 7.4.7, together with a diffeomorphism M ∼= ML ∪Σ×R

MR, a collar-gluing of M (or of bordisms ML and MR) along Σ. These data are
organised as a linked space MΣ in the obvious manner by mixing the examples
in Sections 7.2 and 7.4.

We will disregard the choice of diffeomorphism in the collar-gluing, and,
for simplicity, assume M has only two boundary components, ∂L and ∂R, and
no defect submanifolds. We will include these back in within the proof of
Proposition 7.5.5

Definition 7.5.2. By cutting-and-gluing (of M along Σ) we mean the refine-
ment map

r = rΣ : MΣ →M,

one which is stratum-wise a diffeomorphism,8 given, after decorating the out-
ward copies of the cut locus with ` and r, by

∂L ∂L M◦
L Σ` Σ` Σ` Σ× 1

∂L ∂L M◦

. . .

. . .

Σ× 1 Σr Σr Σr M◦
R ∂R ∂R

M◦ ∂R ∂R

where the vertical maps are all inclusions and identities. For better legibility
and distinguishability, the links are coloured blue.

The following definition extends P 2 to situations where M comes with a
specified collar gluing. It is slightly redundant (∂M has two components) as
well as incomplete (since defects – and different numbers of boundary com-
ponents – are missing), but we give the obvious extension in the proof of
Proposition 7.5.5

Definition 7.5.3 (The P 2 construction with a cut locus). We resume working
in the situation above. Writing M◦

L =MLr ∂L and M◦
R =MRr ∂R, we define

8This is a barbarian notion of recollement that will suffice for our purposes.
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the cut collar MΣ to be
∂L ∂L Σ Σ

∂L × 1 ∂L M◦
L Σ Σ× 1

. . .

. . .

Σ Σ ∂R ∂R

Σ× 1 Σ M◦
R ∂R ∂R × 1

the linked version of
MΣ = ∂L ×R≤0 ∪∂L×{0} ML ∪Σ×R<1 Σ×R ∪Σ×R>−1 MR ∪∂R×{0} ∂R ×R≥0.

The cut dual M!
Σ is

0 0 0 0

1 0 1 0 1

,

the linked version of R{±1}, the real line with defects {−1}, {1}. The projection
pΣ : MΣ →M!

Σ is, using Notation 7.2.16, as follows:

∂L × 1 ∂L M◦
L Σ Σ× 1 Σ M◦

R ∂R ∂R × 1

1 0 1 0 1

Remark 7.5.4. In order to conform to Definition 7.1.2, it remains to specify

Σ`/r (M◦)I

Σ`/r ×M◦
L/R M◦ ×M◦

,

Σ`/r (M◦)I

Σ`/r × (Σ× 1) M◦ ×M◦

,

which are given analogously to one another. For instance, for the map Σ` →
(M◦)I on the left, first reparametrise the gluing line as R ∼= (−1, 1) such
that Σ × 1 = Σ × (−1, 1) is the middle embedding. Extend now the tubular
neighbourhood of Σ to times (−2, 2) ⊃ (−1, 1). The link embedding Σ` ↪→M◦

L

is given by following for a nonzero time τ with −1 > τ > −2 the outward
nonvanishing vector field XΣ along Σ that frames the rank-1 normal bundle
of Σ ⊂ M (whereas Σr ↪→ M◦

R is determined by following it for time −τ),
while the stratum map Σ` → M◦ hits the copy at time −1 ∈ (−2, 2). Now,
the map Σ` → (M◦)I at p ∈ Σ` can be chosen to be the path from p at time
−1 to p at time τ along XΣ. This is in essence the construction discussed in
Remark 7.1.12.

The following is a completely straightforward statement that formalises the
sense in which P 2 is compatible with cutting and gluing, and its proof consists
purely in bookkeeping.
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Proposition 7.5.5. The P 2 construction is compatible with cutting and gluing.
That is, it is covariant along refinements, in that the refinement r : MΣ →M
induces maps r : MΣ →M and r! : M!

Σ →M! such that

MΣ M

M!
Σ M!

pΣ

r

p

r!

(7.5.6)

commutes.

Proof. Let M = ML ∪Σ×R MR be a collar-gluing of a bordism M with
defect submanifolds ΣL

i ⊂ ML, ΣR
i ⊂ MR of codimensions ki,L resp. ki,R with

trivialised normal bundles, and boundary components ∂Lj ⊂ ML, ∂Rj ⊂ MR.
We will first set up the poset square

PΣ P

P!
Σ P!

pΣ

r

p

r!

over which (7.5.6) is defined. The featured posets were defined mostly impli-
citly, so we will explicate them.

The poset P of M itself is generated by {0, iL/R(+) , j
L/R
(+) }i,j and arrows iL/R, jL/R <

0 and iL/R < i
L/R
+ , jL/R < j

L/R
+ . The poset PΣ is generated by

{L, cL,C, cR,R, iL/R(+) , j
L/R
(+) }i,j

with arrows
i/jL/R < i/j

L/R
+ ,

iL/R, jL/R < L/R,

cL/R < C,

cL/R < L/R.

The cut collar is over the latter poset in that the L/R-strata are M◦
L/R, the

cL/R-strata are Σ`/r, the C-stratum is Σ× 1, and the i/jL/R- and jL/R-strata
are ΣL/R

i ×Ski,L/R−1 resp. ∂L/Rj , and finally the iL/R+ - and jL/R+ -strata are ΣL/R
i ×

Ski,L/R−1 × 1 resp. ∂L/Rj × 1.
The elements in the poset square are mapped as follows:

L, cL,C, cR,R, i
L/R
(+) , j

L/R
(+) 0, i

L/R
(+) , j

L/R
(+)

cL,C, cR, i
L/R, jL/R 0, iL/R, jL/R

r

pΣ p

r!

Here,
pΣ(L/R) = pΣ(i/j

L/R) = cL/cR
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and
pΣ(i/j

L/R
+ ) = i/jL/R

and similarly for p. The vertical maps send i/j
L/R
+ 7→ i/jL/R. In P!

Σ we have
cL < iL/R. The upper horizontal map is

r : PΣ → P,

L,R,C, cL/R 7→ 0

and otherwise the identity, while the lower horizontal map is
r! : P!

Σ → P!

cL,C, cR 7→ 0

and otherwise also the identity.
The poset square thus constructed clearly commutes, and the span maps

constituting (7.5.6) over this poset square can be given by the obvious projec-
tions. Evidently, it also commutes. □

For M as before, i.e., with only two boundary components and no defect
submanifolds, r : MΣ →M is

∂L × 1 ∂L M◦
L Σ Σ× 1 Σ M◦

R ∂R ∂R × 1

∂L × 1 ∂L M◦ ∂R ∂R × 1

using Notation 7.2.16, and r! : M!
Σ →M! is

1 0 1 0 1

1 0 1

,

the linked version of the map R{±1} ↠ R{0} that collapses [−1, 1] onto {0}
and scales up the two sides of the former to R<0 and R>0 (much like in [67]).
We see by direct inspection that (7.5.6) commutes. See Figure 6.

Example 7.5.7. For ML as in Example 7.4.8 and MR with a single boundary
component a single codimension-1 defect with trivialised normal bundle,

∣∣M!
Σ

∣∣
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Figure 6. The cutting-and-gluing square (7.5.6) using Nota-
tion 7.2.16; r : MΣ →M omitted.

and
∣∣M!

∣∣ look as follows:

The map r! : M!
Σ →M! collapses the blue closed interval and is otherwise the

identity.
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Remark 7.5.8. In our discussion of P 2 we have treated connected components
separately. However, multiple boundary components and/or defect submani-
folds can be grouped together and then fed into P 2, and the resulting dual will
have fewer strata as well. Grouping boundary components is straightforward,
and the dual will have single half-line per group, reproducing, in the absence
of defects, pictures from [67] upon linked realisation. In particular, when one
has a single group (‘no orientation’) or two groups (one ‘incoming’ and one
‘outgoing’), the realised duals, being a half-line or a line with a point defect
respectively, will again be conically-smooth.

There is no obvious way of grouping defects of differing codimensions, how-
ever, except for simply extending the corresponding links and higher strata
in the dual with disjoint unions. If Σ1 and Σ2 have the same codimension
k = k1 = k2, then they can be grouped as if they are boundary components
since Σ1 × Sk1−1 qΣ2 × Sk2−1 = (Σ1 qΣ2)× Sk−1, but otherwise not. Mixing
boundary components and defects is ill-advised. Of course, it all depends on
what sort of labelling system one wishes to introduce on bordisms with defects.

7.6. P 2 with tangential structure

A choice of ambient smooth tangential structure can be incorporated in
a straightforward way, but in a somewhat restricted case, into the P 2 con-
struction to obtain a structure-sensitive version of it, as we will now briefly
explain.

Let us fix a natural number R ≥ 0, a smooth tangential structure F : Y →
BO(R) ↪→ V ↪→, and a bordism M with mutually disjoint closed defect sub-
manifolds in its interior, with M denoting the associated linked manifold.

For simplicity, assume ∂ = ∂M is connected and that there is a single such
submanifold Σ ⊂M r ∂. We will resume the notation M◦ =M r {∂ q Σ} in
this context, and write n+m = dim(M◦).

Definition 7.6.1. Let S =
(
M

π←− L
ι−→ N

)
be a linked manifold with dim(M) =

n, dim(N) = n+m = R, for simplicity over the poset [1] as depicted. A stable
Y -structure on S is a solid Y -structure as in Definition 6.4.18 where the solid
structures on M and N are stable in the sense of Definition 6.3.6.

If R > n + m, then a stable Y -structure on S is a stable Y -structure on
S×RR−n−m.

Remark 7.6.2. When R = n + m, a stable structure on S according to
Definition 7.6.1 is equivalent, by Theorem 6.4.20, to a cartesian structure with
stratum-wise stable structures. One could refine this definition for different
goals than ours, and we leave this to the interested reader. When R > n+m,
the definition is already much more restrictive.

Lemma 7.6.3. Let S = M be associated with a manifold M with a closed
submanifold defect Σ ⊂ M of codimension k, and suppose it has a stable Y -
structure. Then L = S(NΣ) is a trivial sphere bundle over Σ.
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Proof. First, assume R = n + m = n + k. In the stable case, the
isomorphism π∗W ∼= NNM of bundles over L from Definition 6.4.18 reads
εk ∼= (π∗TΣ)⊥ ⊂ ι∗TM over L = S(NΣ). We can replace ι∗TM by ι∗T(NΣ)
since, by ι : S ↪→M factors through NΣ. Let us also write π for the projection
NΣ→ Σ. We have TN(Σ) ∼= π∗(TΣ)⊕π∗(NΣ), and along the diffeomorphism
N0 := N(Σ)rΣ ∼= S×R, the stable structure pulls back and gives π∗(NΣ) ∼= εk

over N0. We thus have T(N0) ∼= π∗(TΣ) ⊕ εk, yielding N0
∼= Σ× (Rk r {0}).

If R > n +m, we similarly obtain T(N0) ∼= π∗(TΣ) ⊕ εR−n and therefore the
statement. □

Lemma 7.6.3 implies that we have all we need to carry out the P 2 con-
struction:

Definition 7.6.4 (P 2 with stable smooth structures). Let M be a bordism
with defects, with bulk dimension n +m, and a stable Y -structure. The P 2

construction on M is defined to be the same as Definition 7.4.7 except that
all spaces and maps involved therein are to be multiplied by the trivial factor
RR−(n+m).

The examples in the previous chapters apply with the modification indic-
ated in Definition 7.6.4.

Example 7.6.5. Suppose M has a single boundary component ∂, so M =
(∂ ← ∂ ↪→M◦). Say dim(M◦) = n. A stable n-framing on M is a framing on
M◦ and a framing on ∂ × 1 such that the framing on M◦ pulled back to ∂ × 1
and the former are equivalent, in the sense that there is a compatibility map
relating them.

Example 7.6.6. The simplest non-trivial example where Definition 7.6.4 does
not apply is of course when M is the trivially-stratified open Möbius strip and
the smooth tangential structure in question is rank-3 framings (3-framings for
short). The standard embedding of M into R3 induces a cartesian 3-framing
which cannot be promoted to a stable 3-framing since M is not orientable,
implying that the normal bundle to the embedding is non-trivial.

7.7. The cartesian problem

Remark 7.7.1. The examples above show clearly that M! parametrises the
normal bundle of the stable Y -structure on M. In non-trivially stratified cases
such as Example 7.2.5, however, we see that the classifying map of the normal
bundle reverses stratification, which is why we only speak explicitly about the
stratification-preserving projections M → M!. That oughtn’t suggest that
it is impossible to express classifiers of stratified normal bundles within an
appropriate framework. On the other hand, when one starts considering non-
smooth tangential structures, the notions of collar and quadratic dual become
very problematic because the rank of the normal bundle may both increase
or decrase as one moves along strata, since there is no fixed top rank. This
is true, for instance, for essentially all variframed spaces (see Example 6.2.5).
This makes a general description of M! very hard, if not impossible. This is the
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main reason we have restricted ourselves to (relaxations of) smooth tangential
structures.

We will conclude this chapter with a brief discussion on trying to extend
P 2 to deal with examples such as Example 7.6.6.

It is not clear how best to generalise the P 2 construction to the case where
M only has a cartesian Y -structure. More specifically, we can give a good
definition for the collar M, but there is no immediate candidate for M!, or for
p, for related reasons. We will only present a rather trivial extension that works
for the simple fact that we always have a diffeomorphism NΣrΣ ∼= S(NΣ)×R
using the metric.

To illustrate, suppose first that M is smooth (trivially-stratified) and pos-
sesses a not necessarily stable cartesian Y -structure specified by a bundle em-
bedding TM ↪→ FM , and suppose R − N ≥ 1. The total space E of the
normal bundle π : E → M to this embedding carries an induced Y -structure,
since TE ∼= π∗(TM)⊕ π∗(E), the isomorphism being specified by the metric.9
This provides a recipe for evaluating a(n unstratified) disk algebra A with Y -
structure on M given its cartesian Y -structure t: M provides the space E with
Y -structure, which can (be) evaluate(d by) the disk algebra:

ZA : (M, t) 7→
∫
E

A.

However, the result is merely a pointed object, butM has codimension R−N ≥
1 with respect to the top rank, and should therefore be assigned an (R−N)-
dimensional algebraic object. The way the stable case solves this problem
is by using the ‘dual projection’ M × RR−N → RR−N from the bundle E,
and pushing A forward along it. There is no such obvious dual projection in
general.

The obvious extension of P 2 one can still provide in such a situation simply
assigns the projection S(E)×R→ R, which extracts a 1-dimensional algebra
out of (M, t) and A. There is an obvious extension to the case where M is a
bordism with defects that otherwise mimics the previous P 2 construction of
Definition 7.6.4.

This is clearly unsatisfactory if R−N ≥ 2, and even if R−N = 1 as in the
cartesian 3-framed open Möbius strip of Example 7.6.6. This highlights the
need for a twisted version of P 2 that reflects the twistedness of E. We leave
this to future work.
Remark 7.7.2. One can apply the P 2 construction to bordisms M without
defects even if they only have a cartesian Y -structure, since the normal bundle
along a boundary component is always trivialisable. If dim(M) = n < R, then
we can ask that M ×RR−n – thus retaining a stable flavour – have a cartesian
Y -structure, and proceed as in Definition 7.4.7. Since the collar is always a
9Cf. the proof of Lemma 7.6.3. The bundle π∗E is canonically isomorphic to the kernel of
the differential of π; the metric merely splits the ensuing short exact sequence of bundles
over E. We say ‘the’ metric, but if the reader wishes to let it remain a variable, the choice
can be absorbed into the structure on ‘M ’.
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refinement of M◦ (or of M◦ × RR−n), the cartesian structure still induces a
Y -structure on M◦ (or on M◦ ×RR−n), and so the map p : M → M ! is again
a constructible bundle along which we can push forward a Y -structured disk
algebra.
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